Technische Regel

Bohrungsintegrität

Stand: 07/2017

Bundesverband Erdgas, Erdöl und Geoenergie e. V.
Technische Regel Bohrungsintegrität

Inhalt
Einleitung ... 4
1. Bohrungsintegrität und Barrieren ... 7
2. Bohrungsstandard .. 8
 2.1. Bohrungsbarriren ... 11
 2.1.1. Technical Open Flow Potential ... 11
 2.1.2. Zwei Barrierensystem ... 11
 2.1.3. Ein Barrierysystem ... 11
 2.1.4. Bohrungsbarriere-Elemente .. 11
 2.1.5. Gemeinsame Barriere-Elemente ... 11
 2.1.6. Barriere- und Integritätsfehler ... 12
 2.2. Leistungsnormen der Barrieren .. 14
 2.3. Betriebsgrenzen der Barrieren ... 14
 2.4. Akzeptanzkriterien und Barriere-Nachweis .. 14
 2.5. Berichterstattung und Dokumentation ... 15
 2.6. Änderungsmanagement .. 16
 2.7. Ausnahmegenehmigung für Abweichungen von der Regel 17
 2.7.1. Ausnahmegenehmigung für Bestandsbohrungen 17
 2.7.2. Ausnahmegenehmigung bei Veränderungen der Barriere-Elemente 17
3. Empfehlungen zur Sicherstellung der Bohrungsintegrität 18
 3.1. Auslegungsgrundlagen ... 19
 3.1.1. Auslegungsgrundlagen der Bohrung .. 19
 3.1.2. Auslegungsgrundlagen zum Schutz von Umwelt und Umfeld an der Oberfläche ... 19
 3.1.3. Auslegungsgrundlagen zum Grundwasserschutz .. 20
 3.1.4. Auslegungsgrundlagen zum Schutz von Deckgebirge / Barriere Formation ... 21
 3.1.5. Auslegungsgrundlagen mit Bezug zur Zielformation 22
 3.1.6. Dokumentation der Auslegungsgrundlagen ... 22
 3.1.7. Zusätzliche Anforderungen an die Auslegungsgrundlagen von Einpress- und Versenkbohrungen .. 23
 3.1.8. Zusätzliche Anforderungen an die Auslegungsgrundlagen von Porenspeicher-Bohrungen ... 23
 3.1.9. Zusätzliche Anforderungen an die Auslegungsgrundlagen von Kavernen-Bohrungen ... 23
 3.2. Auslegung .. 24
 3.2.1. Gefährdungen... 24
 3.2.2. Barrieren und Barriere-Elemente in der Auslegungsphase 25
 3.2.3. Leistungsnormen und Nachweise der Norm-Erfüllung in der Auslegungsphase ... 25
 3.2.4. Betriebsgrenzen in der Auslegungsphase .. 25
 3.2.5. Bohrungsauflage allgemein ... 27
 3.2.6. Spülungsprogramm ... 27
 3.2.7. Verrohrungsprogramm ... 28
 3.2.8. Zementationsprogramm ... 29
 3.2.9. Programm für Bohrlochkopf und Eruptionskreuz 30
 3.2.10. Komplettierungsprogramm .. 31
 3.2.11. Dokumentation der Auslegung .. 32
 3.2.12. Zusätzliche Anforderungen an die Auslegung von Erdgasbohrungen 32
 3.2.13. Zusätzliche Anforderungen an die Auslegung von Erdölbohrungen 33
 3.2.14. Zusätzliche Anforderungen an die Auslegung von Einpress- und Versenkbohrungen ... 35
 3.2.15. Zusätzliche Anforderungen an die Auslegung von Porenspeicher-Bohrungen 35
 3.2.16. Zusätzliche Anforderungen an die Auslegung von Flüssigkeitskavernen-Bohrungen... 36

Stand: 07/2017

Seite 2 von 94
3.2.17. Zusätzliche Anforderungen an die Auslegung von Gaskavernen-Bohrungen 37
3.3. Herstellung ... 37
 3.3.1. Kontrolle von Porendruck und Bohrloch-Stabilität bei der Herstellung 38
 3.3.2. Abdichtung der durchteuften Formationen bei der Herstellung 38
 3.3.3. Integritätsnachweis der untertägigen Barriere-Elemente bei der Herstellung ... 39
 3.3.4. Abdichtung des Bohrlochs an der Oberfläche bei der Herstellung 41
 3.3.5. Einbauten in das Bohrloch zur Gewährleistung einer sicheren Nutzung bei der
 Herstellung ... 41
 3.3.6. Dokumentation der Herstellung ... 42
 3.3.7. Zusätzliche Anforderungen an die Herstellung von Erdgasbohrungen 43
 3.3.8. Zusätzliche Anforderungen an die Herstellung von Erdölbohrungen 43
 3.3.9. Zusätzliche Anforderungen an Herstellung von Einpress- und Versenkbohrungen 44
 3.3.10. Zusätzliche Anforderungen an Herstellung von Porenspeicher-Bohrungen 44
 3.3.11. Zusätzliche Anforderungen an Herstellung von Flüssigkeitskavernen-Bohrungen 44
 3.3.12. Zusätzliche Anforderungen an Herstellung von Gaskavernen-Bohrungen 44
3.4. Betrieb ... 45
 3.4.1. Bohrungsmonitoring im Betrieb .. 45
 3.4.2. Bohrungswartung im Betrieb ... 47
 3.4.3. Änderung bestehender Spezifikationen im Betrieb .. 48
 3.4.4. Dichtheitskriterien und Dichtheitsnachweise im Betrieb 48
 3.4.5. Höchstzulässiger Ringraumkopfdruck (MAASP) und Betriebsgrenzen im Betrieb 49
 3.4.6. Ringraumdruck-Monitoring und Management im Betrieb 50
 3.4.7. Ringraum Untersuchung und Änderung von MAASP/Schwellenwerten im Betrieb 52
 3.4.8. Risikoanalyse und Management des Ausfalls von Bohrungsbarriere-Elementen im
 Betrieb ... 53
 3.4.9. Berichte und Dokumentation im Betrieb .. 53
 3.4.10. Zusätzliche Anforderungen an den Betrieb von Einpress- und Versenkbohrungen 54
 3.4.11. Zusätzliche Anforderungen an den Betrieb von Porenspeicher-Bohrungen 54
 3.4.12. Zusätzliche Anforderungen an den Betrieb von Flüssigkeitskavernen-Bohrungen 54
 3.4.13. Zusätzliche Anforderungen an den Betrieb von Gaskavernen-Bohrungen 55
3.5. Verfüllung .. 55
 3.5.1. Verfüllungsplanung .. 56
 3.5.2. Verfüllungsdurchführung .. 56
 3.5.3. Dokumentation .. 57
4. Literaturverzeichnis .. 578
Anhang A: Gesetzliche und behördliche Vorgaben und technische Empfehlungen 62
Anhang B: Akzeptanztabellen .. 65
Anhang C: Bohrungsbarriere-Diagramme ... 77
 C.1 Erdgasbohrung mit UTSV ... 77
 C.2 Erdgasbohrung ohne UTSV ... 78
 C.3 Erdölbohrung .. 79
 C.4 Flüssigkeitsgefüllte Kaverne .. 80
 C.5 Flüssigkeitsgefüllte Kaverne mit Überwachungsringraum 81
 C.6 Erdgas Kaverne mit UTSV .. 82
 C.7 Erdgas Kaverne ohne UTSV .. 83
Anhang D: Abkürzungen ... 84
Anhang E: Begriffsbestimmungen .. 85
Kurzerklärung der „Technischen Regel Bohrungsintegrität“

Ziel des Dokuments
Für Bohrungen im Bestand, die ggf. nicht nach dem mit dieser Technischen Regel dokumentierten Stand der Technik hergestellt wurden, werden Verfahren und Bedingungen beschrieben, mit denen die Schutzziele gewährleistet werden können.
Bei der Definition erfolgte ein Abgleich mit internationalen und anderen nationalen Regelwerken.

Inhalt des Dokuments
Wesentliche Bestandteile der technischen Regel sind:
- Bohrungsintegrität und Barrieren, Definition von Integritätsparametern und -prozessen (Kapitel 1)
- Beschreibung des Bohrungsstandards mit verbindlichen Vorgaben (Kapitel 2)
- Empfehlungen zur Sicherstellung der Bohrungsintegrität (Kapitel 3)

Zielgruppen des Dokuments
Das Dokument wurde in erster Linie für Unternehmen der Erdgas und Erdölindustrie sowie für den Bau und Betrieb von Poren- und Kavernenspeichern verfasst, die sich in ihrer Praxis an den beschriebenen Anforderungen und Empfehlungen orientieren.
Darüber hinaus gibt es Behörden, Verbänden und interessierten Personen transparente technische Details zur Integrität von Bohrungen.

Kontakt bei Fragen zur Technischen Regel Bohrungsintegrität:
Bundesverband Erdgas, Erdöl und Geoenergie e.V. (BVEG)
Schiffgraben 47
30175 Hannover
Tel.: 0511 121 72-0
E-Mail: info@bveg.de
Einleitung

Das Mittel für eine sichere und effiziente Nutzung der Untergrundressourcen im Fluidbergbau sind Tiefbohrungen. Sie stellen die Verbindung zwischen den Ressourcen im Untergrund (Erdöl, Erdgas, Sole, geothermische Energie, Speicherraum) und der Erdoberfläche her.

Die Voraussetzung für das Erreichen der Schutzziele ist die Integrität der Tiefbohrungen. Eine Bohrung gilt als integer, wenn die in ihr enthaltenen Fluide bei jeder möglichen Kombination von Druck und Temperatur, der sie innerhalb der vorgesehenen Betriebsbedingungen ausgesetzt werden können, sicher beherrscht werden.

Mit dieser Technischen Regel „Bohrungsintegrität“ wird der Stand der Technik definiert. Die Regel wurde vom Arbeitskreis Bohrungsintegrität des BVEG\(^1\) - Bundesverband Erdgas, Erdöl und Geoenergie erarbeitet. Sie ist für die Anwendung der im Bundesverband Erdgas, Erdöl und Geoenergie organisierten Unternehmen (BVEG) vorgesehen.

Die unterschiedenen Lebenszyklus-Phasen der Technischen Regel sind, Abbildung 1:

- Auslegungsgrundlagen
- Auslegung
- Herstellung
- Betrieb
- Verfüllung.

Die Technische Regel Bohrungsintegrität wurde für Neubohrungen folgender Typen entwickelt:

- Erdgas und Erdöl Förderbohrungen
- Einpress- und Versenkbohrungen
- Porenspeicher Bohrungen
- Gas und Flüssigkeits-Kavernenbohrungen.

\(^1\) BVEG steht im Folgenden auch für WEG (Wirtschaftsverband Erdöl- und Erdgasgewinnung e.V.) und umgekehrt. Der BVEG ist im Juni 2016 nach einer Umstrukturierung aus dem WEG hervorgegangen.
Für Bohrungen im Bestand, die ggf. nicht nach dem mit dieser Technischen Regel dokumentierten Standard hergestellt wurden, werden Verfahren und Bedingungen beschrieben, mit denen die Schutzziele gewährleistet werden können. Im Kern handelt es sich bei diesen Verfahren um die Bewertung und ggf. Minderung von Risiken, die aus Abweichungen der Bohrungsherstellung im Vergleich zu diesem Standard resultieren, siehe 2.7.

Die Anforderungen der Technischen Regel Bohrungsintegrität werden wie folgt unterschieden:

- Die Begriffe „muss“ „ist“ (M) bezeichnet eine Mindestanforderung
- Der Begriff „soll“ (S) bezeichnet eine strenge Vorgabe, von der nur in zu begründenden Ausnahmefällen und atypischen Situationen abgewichen werden kann
- Der Begriff „darf“ „kann“ (K) spricht eine Empfehlung aus, von der jederzeit abgewichen werden kann.

Die für die Umsetzung einzelner Praktiken genannten Technologien sind Beispiele, die in der Regel alternativ zum Einsatz kommen, um bestimmte Ziele zu erreichen.

Die Technische Regel erfüllt alle aktuellen gesetzlichen Anforderungen oder ergänzt diese. Die wichtigsten gesetzlichen Vorgaben und technischen Empfehlungen sind in Anhang A wiedergegeben zusammen mit ihrer Relevanz für die einzelnen Phasen. Inhalte der weiteren Anhänge sind

- Anhang B : Akzeptanztabellen
- Anhang C: Bohrungsbarriere-Diagramme
- Anhang D: Abkürzungen
- Anhang E: Begriffsbestimmungen.

Die Technische Regel erhebt keinen Anspruch auf Vollständigkeit. Es ist möglich, dass sich für einzelne Anwendungen zusätzliche Anforderungen ergeben, die über die hier dokumentierten hinausgehen.
1. Bohrungsintegrität und Barrieren

Die Bohrungsbarrieren müssen während des gesamten Lebenszyklus von der Erstellung bis zur Verfüllung einer Bohrung

- Erwarteten maximalen, kombinierten Belastungen standhalten
- Unter den Bedingungen (Druck, Temperatur, mechanische und chemische Beanspruchungen), die auf sie wirken können, funktionsfähig bleiben sowie
- Durch planmäßige initiale Prüfungen und wiederkehrende Nachprüfungen und Teste überprüfbar sein.

Bohrungsbarrieren sind eine Kombination von einer oder mehreren Bohrungsbarriere-Elementen, s.a. Tabelle 2. Ein Element oder mehrere Elemente zusammen bilden eine Barriere.

Betriebliche Barrieren sind eine Kombination von Praktiken, Prozeduren, Überwachungs- und Steuerungssystemen, um

- Mit Hilfe von Leistungsnormen Bohrungsbarrieren belastungsgerecht auszulegen und Barriere-Elemente auszuwählen
- Mit Hilfe definierter Akzeptanzkriterien (siehe Anhang B) die Wirksamkeit der Barriere-Elemente nach Einbau nachzuweisen
- Durch Monitoring und Steuerung einen Bohrungsbetrieb innerhalb der Leistungsgrenzen der Barriere-Elemente (Betriebsgrenzen) sicherzustellen
- Durch Wartungsmaßnahmen die Wirksamkeit der Barriere-Elemente über die Lebensdauer der Bohrung zu erhalten und diese in wiederkehrenden Prüfungen nachzuweisen
- Anomalien und Ausfälle von integritätsrelevanten Komponenten zu managen.
Ihr Zusammenwirken ist in Abbildung 2 als Prozess dargestellt.

Abbildung 2: Integritätsmanagement Prozess

2. Bohrungsstandard

Die Technische Regel gilt für folgende Bohrungstypen:

- Erdgasbohrungen
- Erdölbohrungen
 - Mit und ohne open-flow Potential
 - Nicht-Thermal und Thermalbohrung
- Hilfsbohrungen
 - Beobachtungsbohrungen²
 - Einpressbohrungen (Unterscheidung Wasser-Einpressbohrungen ohne und mit Wärmezufuhr für sekundäre und tertiäre Fördermaßnahmen sowie Gas-Einpressbohrungen für tertiäre Maßnahmen)
 - Versenkbohrungen
- Porenspeicher Bohrungen
 - In ausgeförderten Lagerstätten und Aquiferen
- Kavernenspeicher Bohrungen
 - Gas, Öl, Sole und Produkt.

² für Tiefbohrungen
Typische Merkmale dieser Bohrungstypen sind in der nachfolgenden Tabelle 1 aufgeführt.

Auslegungsgrundsagenphase:
- Kenntnis der auf eine Bohrung zukünftig wirkenden Belastungen und den daraus resultierenden Gefährdungen und Risiken für Sicherheit und Umwelt über- und untertage
- Analyse der Gefährdungen und Risiken und Entwicklung von Anforderungen an die technische Auslegung, Betrieb und Verfüllung

Auslegungsphase:
- Umsetzung der Anforderungen in ein Bohrungsdesign mit geeigneten Bohrungsbarrieren zum Management der festgestellten Sicherheits- und Umweltrisiken unter Berücksichtigung von erwarteten oder vorhersehbaren Änderungen während der Lebensdauer der Bohrung
- Analyse der Anforderungen zur Festlegung der Akzeptanzkriterien für die Barriere-Elemente

Herstellungsphase
- Spezifikationsgerechte Fertigung der Barriere-Elemente gemäß Anforderungen mit Qualitätskontrolle und Ausführung des Bohrungsdesigns
- Nachweis von Funktion und Wirksamkeit der Barriere-Elemente unter Nutzung der Akzeptanzkriterien

Betriebsphase
- Betrieb innerhalb der aktuellen Betriebsgrenzen
- Monitoring der Wirksamkeit der Bohrungsbarrieren
- Wartung und Instandhaltung der Bohrungsbarrieren
- Bei integritätsrelevanten Ereignissen, Durchführung einer Risikobewertung und Umsetzung der identifizierten Maßnahmen
- Veränderungsmanagement

Verfüllungsphase
- Herstellung eines dauerhaften Verschlusses.
Tabelle 1: Typische Merkmale der definierten Bohrungstypen in Deutschland

<table>
<thead>
<tr>
<th>Gestein des Zielhorizontes</th>
<th>Erdgas</th>
<th>Endöl</th>
<th>Einpressbohrung</th>
<th>Sandstein</th>
<th>Gas-Kavernen</th>
<th>Flüssigkeits-Kavernen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formation</td>
<td>Jura, Trias, Perm, Karbon</td>
<td>Tertiär, Kreide, Jura, Trias, Perm, Karbon</td>
<td>Tertiär, Kreide, Jura, Trias, Perm, Karbon</td>
<td>Tertiär, Kreide, Trias, Perm, Karbon</td>
<td>Perm (Zechstein, Rotliegen-des)</td>
<td>Perm (Zechstein, Rotliegen-des)</td>
</tr>
<tr>
<td>Teufe (m u.R.)</td>
<td>ca. 2.000 - 5.000</td>
<td>ca. 400 - 3.000</td>
<td>ca. 700 - 4.000</td>
<td>ca. 700 - 4.000</td>
<td>ca. 500 - 2.700</td>
<td>ca. 400 - 2.500</td>
</tr>
<tr>
<td>Reservoir Druck (Sohl-Druck)</td>
<td>Initial: Wassersäule oder höher</td>
<td>Initial: Wassersäule oder höher</td>
<td>Initial: bis zu Wassersäule und höher</td>
<td>Initial: bis zu Wassersäule und höher</td>
<td>initial: Solesäule, danach bis ca. 1.8 x Wassersäule</td>
<td>initial: Solesäule danach bis ca. 1.8 x Wassersäule</td>
</tr>
<tr>
<td>Druckänderung Änderung durch Betrieb</td>
<td>Abnehmend</td>
<td>Ohne Druckerhäftung in der Regel stark abnehmend</td>
<td>Steigend bis zu initial</td>
<td>Steigend bis zu initial</td>
<td>Saisonale wechselnd zwischen max. Druck und 40% davon</td>
<td>Täglich und saisonal wechselnd zwischen max. Druck und ca. 40%</td>
</tr>
<tr>
<td>Kopfdruk initial / mit Be-trieb</td>
<td>Hoch / abnehmend</td>
<td>Niedrig / meist kein open-flow Potential</td>
<td>Niedrig / meist unterhydrostatisch / steigend</td>
<td>Niedrig / meist unter-hydrostatisch / steigend</td>
<td>Mittel / saisonal wechselnd</td>
<td>Mittel / täglich und saisonal wechselnd</td>
</tr>
<tr>
<td>Open-flow Potential</td>
<td>Ja</td>
<td>Zum Teil</td>
<td>Zum Teil</td>
<td>Ja</td>
<td>Ja</td>
<td>Zum Teil</td>
</tr>
<tr>
<td>Reservoir Temperatur (°C)</td>
<td>ca. 70 - 170</td>
<td>ca. 35 - 140</td>
<td>ca. 50 - 160</td>
<td>ca. 50 - 90</td>
<td>ca. 25 - 90</td>
<td>ca. 20 - 70</td>
</tr>
<tr>
<td>Kopf Temperatur (°C)</td>
<td>Niedrig bis hoch</td>
<td>Niedrig</td>
<td>Wasser: niedrig</td>
<td>Thermal: hoch</td>
<td>Niedrig</td>
<td>Niedrig bis mittel</td>
</tr>
<tr>
<td>Barriereformation</td>
<td>Ton-, Mergel- und Salzschichten, steiner Anhydrit</td>
<td>Ton-, Mergelschichten, Salz</td>
<td>Ton-, Mergelschichten, ver- einzelt Salzschichten</td>
<td>Ton-, Mergelschichten, ver- einzelt Salzschichten</td>
<td>Steinsalz</td>
<td>Steinsalz</td>
</tr>
<tr>
<td>Korrosive Bestandteile</td>
<td>Lagerstättenwasser</td>
<td>Lagerstättenwasser</td>
<td>Lagerstättenwasser</td>
<td>Lagerstättenwasser</td>
<td>Lagerstättenwasser</td>
<td>Vernachlässigbar</td>
</tr>
<tr>
<td>Besonderheiten in Betriebs-phase</td>
<td>Meist nur geringe Wass-erproduktion</td>
<td>Hohe Wasser-produktion</td>
<td>Sekundär Verfahren: kalte Flüssigkeiten</td>
<td>Kaltes Medium</td>
<td>Hohe Fließraten</td>
<td>Convergenz (Subsidenz)</td>
</tr>
<tr>
<td>Nutzungsdauer (Jahre)</td>
<td>15 - >50</td>
<td>Meist > 50 Jahre</td>
<td>Meist > 10 bar</td>
<td>15 - > 40</td>
<td>siehe Produktionsbohrungen</td>
<td>> 50</td>
</tr>
</tbody>
</table>

1) Wassersäule ca. 1 bar/10m x Teufe 2) niedrig: atmosphärisch bis 10 bar, mittel: bis 100 bar, hoch: > 100 bar 3) niedrig: bis 50 °C, mittel: 50-100 °C, hoch: >100 °C

Stand: 07/2017
2.1. Bohrungbarrieren

Bohrungen werden mit Barrieren hergestellt, die über den Lebenszyklus der Bohrungen erhalten werden. Nachfolgend werden die Anforderungen an diese Barrieren beschrieben.

2.1.1. Technical Open Flow Potential

Der wesentliche Betriebsparameter zur Beurteilung der Notwendigkeit von mehr als einer Barriere ist das technische open-flow Potential. Dieses ist definiert als die maximale, beständige Fließrate aus der Lagerstätte bei atmosphärischem Druck am Bohrlochkopf, im Weiteren als open-flow Potential bezeichnet.

2.1.2. Zwei Barrierensystem

Abweichungen sind in Kapitel 2.6 geregelt.

2.1.3. Ein Barrieresystem

Für Bohrungen ohne open-flow Potential definiert diese Technische Regel eine Barriere als ausreichend, um Bohrungsintegrität zu gewährleisten.

2.1.4. Bohrungsbarriere-Elemente

Abbildung 3 zeigt beispielhaft Bohrungbarrieren und Bohrungsbarriere-Elemente für die wichtigsten der unterschieden Bohrungstypen. Technisch bedingt können Elemente der ersten Barriere auch Bestandteil der zweiten Barriere sein, z. B. durch Zusammenführen der Umhüllenden im Eruptionskreuz.

2.1.5. Gemeinsame Barriere-Elemente

Design- oder aktivitätsabhängig kann es notwendig sein, dass Bohrungbarrieren Barriere-Elemente gemeinsam nutzen und damit die vollständige Unabhängigkeit der Barrieren nicht gegeben ist. In diesen Fällen ist durch eine Risikoanalyse nachzuweisen, dass die Gewährleistung der Schutzziele nicht kompromittiert wird [4].
2.1.6. Barriere- und Integritätsfehler

Ziel des Einsatzes von Barrieren ist es, durch die Anwendung von Maßnahmen das Risiko eines unkontrollierten Austritts von Fluiden zu reduzieren. Dabei sind folgende Situationen der möglichen Ereignisse zu unterscheiden [14]:

- **Barriere-Fehler:** Das Kriterium der technischen Dichtheit eines oder mehrerer Barriere-Elemente wird nicht mehr erfüllt ohne dass es zu einer Leckage von Fluiden aus der Bohrung nach außen kommt, weil
 - eine sekundäre Barriere vorhanden ist und/oder
 - aufgrund der vorherrschenden Druckbedingungen untertage nur ein Fluss in das Bohrloch erfolgen kann.
 Eine Risikobewertung und Durchführung von identifizierten Minderungsmaßnahmen ist notwendig (s. Kapitel 2.6)
- **Integritäts-Fehler:** Das Kriterium der technischen Dichtheit eines oder mehrerer Barriere-Elemente wird nicht mehr erfüllt. Eine Leckage von Fluiden aus der Bohrung nach Außen ist möglich. Sicherungsmaßnahmen sind umgehend auszuführen.

Abbildung 3: Typische Bohrungsbarriere-Diagramme und Barriere-Elemente
Tabelle 2: Wichtige Barriere-Elemente

<table>
<thead>
<tr>
<th>Barriere-Element</th>
<th>Ort</th>
<th>Auslegung</th>
<th>Herstellung</th>
<th>Betrieb</th>
<th>Verfüllung</th>
<th>Mögliches Ereignis</th>
<th>Minderungsmaßnahmen Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eruptionskreuz-Körper</td>
<td>Solid Block, Schieberstock</td>
<td>Übertagung (OT)</td>
<td>Qualitätsprüfung Bauteil (QPB), Qualifizierte Montage, Drucktest</td>
<td>Wiederkehrende Dichtheits-prüfungen</td>
<td>Demontage</td>
<td>Integrität-Fehler Element OT</td>
<td>Austausch</td>
</tr>
<tr>
<td>Eruptionskreuz - Ventile</td>
<td></td>
<td></td>
<td>Qualifizierte Montage</td>
<td>Visuelle Inspektion, Fernüberwachung (Automatische Abschaltung)</td>
<td></td>
<td>Barriere-Fehler Element OT</td>
<td>Abschmiren, Austausch</td>
</tr>
<tr>
<td>Bohrlochkopf</td>
<td></td>
<td></td>
<td>QPB, Qualifizierte Montage, Drucktest</td>
<td>Überwachung von Ringraum & Kontrollöfnungen</td>
<td></td>
<td>Barriere-Fehler Element OT</td>
<td>Austausch</td>
</tr>
<tr>
<td>Bohrlochlochventile (Ringraum-Aspersventile)</td>
<td></td>
<td></td>
<td>QPB, Qualifizierte Montage</td>
<td>Zustandsbewertung, Druckteste</td>
<td></td>
<td>Barriere-Fehler Element OT</td>
<td>Austausch</td>
</tr>
<tr>
<td>Stopfbuchse-Poliertange</td>
<td></td>
<td></td>
<td>QPB, Hersteller Regeln, Einbauüberwachung, Drucktest</td>
<td>Ringraum Überwachung, Zustandsbewertung</td>
<td>Demontage</td>
<td>Barriere-Fehler Element UT</td>
<td>Alternative Barriere nutzen</td>
</tr>
<tr>
<td>Steigrohr Hänger</td>
<td></td>
<td></td>
<td>API Regeln, Dichtheitsstest</td>
<td>Periodischer Dichtheitsstest</td>
<td></td>
<td>Integrität-Fehler Element OT</td>
<td></td>
</tr>
<tr>
<td>Steigrohr Hänger Plug</td>
<td></td>
<td></td>
<td>Dichtheitstest, s. Steigrohr</td>
<td>Ringraum Überwachung</td>
<td></td>
<td>Barriere-Fehler Element OT</td>
<td></td>
</tr>
<tr>
<td>Untertage Sicherheitsventil</td>
<td></td>
<td>Unterlage (UT)</td>
<td>Dichtheitstest, s. Steigrohr</td>
<td>Ringraum Überwachung</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Ringraum Sicherheitsventil</td>
<td></td>
<td></td>
<td>Hersteller Regeln, Dichtheitsstest</td>
<td>Ringraum Überwachung</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Schiebermuffe</td>
<td></td>
<td></td>
<td>API Regeln, Dichtheitsstest</td>
<td>Periodischer Dichtheitsstest</td>
<td></td>
<td>Barriere-Fehler Element OT</td>
<td></td>
</tr>
<tr>
<td>Gas Lift Ventil</td>
<td></td>
<td></td>
<td>Dichtheitstest, s. Steigrohr</td>
<td>Ringraum Überwachung</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Produktionspacker / Injektionskopf</td>
<td></td>
<td></td>
<td>Hersteller Regeln, Dichtheitsstest</td>
<td>Ringraum Überwachung</td>
<td>Demontage oder Verbleib</td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Futterrohr / Liner</td>
<td></td>
<td>Unterlage (UT)</td>
<td>Hersteller / API Regeln, Einbauüberwachung, Drucktest</td>
<td>Ringraum Überwachung</td>
<td></td>
<td>Barriere-Fehler Element OT</td>
<td></td>
</tr>
<tr>
<td>Linerpacker</td>
<td></td>
<td></td>
<td>Drucktest</td>
<td>Je nach Bohrungdesign-Ringraum-Überwachung</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Zement</td>
<td></td>
<td></td>
<td>Erfolgsbewertung, ggf. Messungen</td>
<td>Zustandsbewertung</td>
<td></td>
<td>Barriere-Fehler Element UT; ggf. Fluss hinter den Rohren</td>
<td></td>
</tr>
<tr>
<td>Deckgebirge</td>
<td></td>
<td></td>
<td>Geologische Bewertung, ggf. FIT, LOT</td>
<td>Reserveoir Management</td>
<td>n.a.</td>
<td>Barriere-Fehler Element UT; ggf. Fluss hinter den Rohren</td>
<td>Zementation</td>
</tr>
<tr>
<td>Temporärer Plug</td>
<td></td>
<td></td>
<td>Hersteller / API Regeln, Dichtheitsstest</td>
<td>Hersteller / API Regeln, Dichtheitsstest</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Permanenter Plug</td>
<td></td>
<td></td>
<td>Zement/Drucktest</td>
<td>Hersteller / API Regeln, Dichtheitsstest</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Zement</td>
<td></td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
<tr>
<td>Technisches Fluid (Fluidgradient > Formationsdruckgradient)</td>
<td></td>
<td></td>
<td>Messungen</td>
<td>Messungen</td>
<td></td>
<td>Barriere-Fehler Element UT</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 07/2017
2.2. **Leistungsnormen der Barrieren**

Eine Leistungsnorm für ein Bohrungsbarriere-Element sollte unter anderem folgende Qualitätsmerkmale spezifizieren [1] [3]:

- Funktionalität – was die Ausrüstung leisten muss, um Integrität herzustellen und aufrechtzuerhalten
- Verfügbarkeit – das Ausmaß, in dem die Ausrüstung ihre funktionale Integrität beibehalten kann
- Zuverlässigkeit – die Wahrscheinlichkeit, dass die Ausrüstung bei Aktivierung funktionsfähig ist
- Wechselwirkungen mit und Abhängigkeiten von anderer, für die Funktionalität kritischer Ausrüstung.

2.3. **Betriebsgrenzen der Barrieren**

Betriebsgrenzen sind Kriterien um sicherzustellen, dass die Bohrung innerhalb der Auslegungsgrenzen ihrer Barriere-Elemente betrieben wird, die durch die oben beschriebenen Leistungsnormen bestimmt werden. Sie sind Voraussetzung dafür, dass Bohrungsintegrität während des gesamten Lebenszyklus der Bohrung aufrechterhalten werden kann. Die Betriebsgrenzen sind vom Bohrungsbetreiber festzulegen, gemeinsam mit Verfahrensweisen zur Überwachung und Aufzeichnung jedes einzelnen Betriebsgrenzen-Parameters einer Bohrung in den Zeiträumen, in denen die Bohrung in der Herstellung, im Betrieb, eingeschlossen oder stillgelegt ist. Hierzu gehören auch (z. B. im Falle von Ringraumdruck) [1] [3]:

- Festlegung von Schwellenwerten für die Bohrungs-Betriebsgrenzen
- Maßnahmen bei Annäherung an die festgelegten Schwellenwerte
- Erforderliche Maßnahmen bei Überschreitung von Schwellenwerten
- Erforderliche Sicherheitssysteme, die Betriebsgrenzen-Parameter innerhalb der definierten Grenzen halten.

Von besonderer Bedeutung in diesem Kontext ist der höchstzulässige Ringraumkopfdruck (maximum allowable annulus surface pressure, MAASP). Der MAASP ist der höchste Druck am Bohrlochkopf, der für einen Ringraum zulässig ist, ohne die Integrität eines Barriere-Elementes dieses Ringraums zu gefährden.

2.4. **Akzeptanzkriterien und Barriere-Nachweis**

Der Wirksamkeits-Nachweis einer Komponente oder eines Barriere-Elementes ist die Prüfung, ob das Element die für die Komponente definierten Normen erfüllt. Diese werden in Form von Akzeptanzkriterien definiert für z. B. Funktionsprüfung, Dichtheitsprüfung, Lastprüfung und Modellverifizierung, siehe auch Anhang B.

Grundlage der Wirksamkeitsnachweise bilden hierbei die durchgeführten Qualitätskontrollen beim Hersteller, die die Komponente als „fit-for-purpose“ qualifizieren, z. B. Drucktests, Materialtests, Baugruppentests, sowie definierte Montageanleitungen, die befolgt werden (z. B. Einbauprozedur).

- Funktionsfähigkeit der Armaturen
- Schließ-/Öffnungszeiten der Armaturen
- Umdrehungen des Ventilstellgriffs nach Feststellung von Anfangs- und Endstellung der entsprechenden Armatur
- Antriebsstellweg

Für Barriere-Elemente sind Kriterien der technischen Dichtheit zu definieren. Ein Barriere-Element gilt als dicht, wenn bei einer Dichtheitsprüfung ein definerter Grenzwert der Leckagerate eingehalten wird [15], siehe auch 3.4.4. Die Grenzwerte gewährleisten die Einhaltung der Schutzziele. Die Dichtheitsanforderungen berücksichtigen:

- Gesetzliche Regeln
- Stoffeigenschaften
- Betriebsbedingungen
- Bohrungstyp, -designmerkmale und Status
- Industrienormen wie API 14b [16], EN ISO 14310 [17], ISO/DIS 16530-1 [1] etc.
- Prüfmedium.

Im Betrieb können bestimmte Barriere-Elemente nur durch geeignete Modell- oder Typprüfungen verifiziert werden, da Dichtheitsprüfungen möglicherweise undurchführbar oder nur unter unverhältnismäßig hohem Aufwand umzusetzen sind. In derartigen Fällen können Barriere-Elemente im Rahmen wiederkehrender Prüfungen auf der Basis von Anzeichen für Zustandsverschlechterungen und/oder der Modellierung ihrer Auswirkungen bewertet werden.

2.5. **Berichterstattung und Dokumentation**

Informationen in Zusammenhang mit der Auslegung, der Herstellung, dem Betrieb, der Wartung und der dauerhaften Verfüllung einer Bohrung sollten während des gesamten Lebenszyklus der Bohrung aufbewahrt werden und verfügbar sein.

PRAKTIKEN: VORHALTEN ALLGEMEINER BOHRUNGSINFORMATION

- Der Betreiber muss Inhalt und Aufbewahrungsduer vorzuhalter Bohrungsinformation festlegen (M).
- Die festgelegte Information muss vorgehalten werden und allen maßgeblichen Anwender zugänglich sein (M).
- Für die Überprüfung und Aktualisierung von Daten und Dokumenten müssen dokumentierte Prozesse und Verfahren existieren (M).

PRAKTIKEN: ALLGEMEINE BERICHTERSTATTUNG ZUR INTEGRITÄT VON BOHRUNGEN

- Festlegung der über die gesetzlichen und behördlichen Vorschriften hinausgehenden Berichtspflichten (S). Sie können u. a. umfassen (K):
Routineberichte, herausgegeben in vorgegebener Regelmäßigkeit (z. B. monatlich, vierteljährlich oder jährlich), welche die Tätigkeiten und Problembehandlungen in Zusammenhang mit der Bohrungsintegrität wiedergeben
- Berichte zu definierten Leistungskennzahlen (KPIs)
- Ereignisspezifische Bohrungsintegritätsvorfälle und Untersuchungsberichte

- Inhalte von Berichterstattungen und Empfänger sollten festgelegt sein (S). Inhalte können u. a. umfassen (K):
 - Bohrungsüberprüfung und integritätsrelevante Änderung oder Verschlechterung bzw. Verbesserung der Bohrung und seiner Komponenten
 - Änderungen der ursprünglichen Grenzbedingungen für den Betrieb der Bohrung, z. B. maximal zulässige Ringraum-Kopfdrücke (MAASP)
 - Bohrungsbarriere-Zustand, inkl. Verlust von Barriere-Elementen
 - Reparaturen an oder Austausch von Bohrungskomponenten und von Barriere-Elementen bis hin zur vollständigen Aufwältigung.

PRAKTIKEN: BESONDERE DOKUMENTATIONEN AM ENDE VON LEBENSZYKLUS-PHASEN

- Herstellungsphase zur Betriebsphase: Dokumentation aller einschlägigen Informationen, die für die formelle Übertragung der Verantwortung für die Bohrung und ihren Betrieb vom Bohrbetrieb an den Produktions- oder Speicherbetrieb notwendig sind; Qualitätssicherung und Abnahme, siehe auch 3.3.6 (M).
- Betriebsphase zur Verfüllungsphase: Dokumentation aller für die Planung und die Herstellung eines dauerhaft dichten Bohrungsverschlusses notwendigen Information (M).

2.6. Änderungsmanagement

Veränderungen, die an den physischen Barriere-Elementen einer Bohrung vorgenommen werden und/oder Abweichungen von den ursprünglich festgelegten Leistungsnormen oder auch Änderung in der Nutzung einer Bohrung, müssen im Rahmen eines formalen Änderungsprozesses erfolgen. Dafür muss der Betreiber klare Regeln haben (M). Inhalte eines solchen Prozesses sollten u. a. sein:

- Identifizierung einer Änderungsanforderung (M)
- Identifizierung der Auswirkung der Änderung und der zu beteiligenden Betroffenen, insbesondere welche Normen, Verfahren, Arbeitspraktiken, Prozesssysteme, Zeichnungen usw. von der Änderung betroffen wären und wie (S)
- ggf. Durchführung einer Risikoanalyse (S)
- ggf. Vorlage des Änderungsantrages zur Überprüfung und Genehmigung entsprechend dem Zuständigkeitsystem des Bohrungsbetreibers (S)
- Bekanntmachung und Aufzeichnung des genehmigten Änderungsantrages (M)
- Umsetzung des Änderungsantrages wie genehmigt (M).

Wird die Änderungsmaßnahme in ihrer Gültigkeit befristet, wird die zugelassene Änderung am Ende der Gültigkeitsdauer zurückgenommen oder es wird eine Verlängerung beantragt und zur Überprüfung und Genehmigung vorgelegt.
2.7. Ausnahmeregelung für Abweichungen von der Regel

Im Management der Integrität von Bohrungen sind betriebsinterne Ausnahmeregelungen vorgesehen, um Abweichungen von den Anforderungen eines Standards zu behandeln [1] [5] [18]. Dies trifft insbesondere für Bohrungen in der Betriebsphase zu. Gründe für Abweichungen von dieser Technischen Regel sind insbesondere:

- Bohrungserstellung nach einem früheren, abweichenden Standard
- Ereignisse, die zu einer Veränderung der Wirksamkeit von Barriere-Elementen geführt haben.

Die Erteilung einer Ausnahmeregelung erfolgt auf der Basis eines klaren Verständnisses und Bewertung der Abweichung vom Standard, die Kenntnis der Wirksamkeit der vorhandenen Barrieren und des Risikos für den Bohrungsbetrieb.

Die Erteilung erfolgt falls erforderlich unter technischen und zeitlichen Auflagen. Sowohl die Erteilung einer Ausnahmeregelung als auch ihre mögliche Verlängerung muss durch klare Bestimmungen des Betreibers geregelt sein, darin eingeschlossen die interne Autorisierung einer Ausnahmeregelung.

2.7.1. Ausnahmeregelung für Bestandsbohrungen

PRAKTIKEN: BESTANDSBOHRUNGEN

- Der Bohrungsbetreiber muss für seine Bohrungen Abweichungen in der Herstellung von dem mit dieser Technischen Regel definierten Standard (insbesondere bezüglich seiner Barrieren) kennen bzw. diese nach einem zu definierenden Zeitplan erfassen (M)
- Bei Abweichungen vom Standard, muss das Risiko, das von der Bohrung ausgeht, bewertet werden. Dabei müssen die Qualität in der Beschreibung des Integritätszustandes der Bohrungbarriere-Elemente sowie Erfahrungen beim bisherigen Betrieb der Bohrung berücksichtigt werden (M)
- Der Betreiber ist frei in der Wahl der Methodik, die Risiken zu bewerten (K)
- Basierend auf dem Ergebnis der Risikobewertungen, müssen ggf. erforderliche Maßnahmen festgelegt werden, um einen sicheren Bohrungsbetrieb zu gewährleisten (M)
- Kann ein sicherer Bohrungsbetrieb nicht gewährleistet werden, muss die Bohrung außer Betrieb genommen, gesichert und ggf. verfüllt werden (M)
- Über die Verwendung der Bohrung bis zur Durchführung von ggf. festgelegten Maßnahmen muss zeitnah entschieden werden (M)
- Erforderliche Dokumentationen und Genehmigung der Ausnahme können gemäß unternehmensinterner Vorgaben erfolgen (K).

2.7.2. Ausnahmeregelung bei Veränderungen der Barriere-Elemente

Veränderungen können direkt im Rahmen wiederkehrender Prüfungen des Zustandes von Barriere-Elementen erkannt werden oder indirekt aufgrund ihrer Auswirkungen, zum Beispiel auf das Ringraumdruckverhal-
ten, Produktionsverhalten (z. B. Gehalt an Korrosionsprodukten in den mitgeführten Flüssigkeiten), Injektionsverhalten etc. Werden solche Auswirkungen im Betrieb beobachtet, müssen ihre Ursachen untersucht werden, denn sie können Hinweis auf die Veränderung eines oder mehrerer Barriere-Elemente sein.

Ist die (Wieder-)Herstellung eines Standard-gerechten Bohrungszustandes nicht möglich oder ist sie in hohem Maße unverhältnismäßig zum Gewinn an zusätzlicher Sicherheit, ist im Rahmen einer Risikoanalyse zu prüfen, ob ein sicherer Bohrungsbetrieb unter Anwendung abgeschwächter Leistungsnormen und zusätzlicher Maßnahmen zur Risikominderung gewährleistet werden kann. Änderungen der Leistungsnormen sollten im Rahmen eines Änderungsmanagement-Prozesses vorgenommen werden, für den der Bohrungs-Betreiber klare Regeln haben sollte, siehe Abschnitt 2.6.

PRAKTIKEN: VERÄNDERUNG EINES BARRIERE-ELEMENTES

- Wird ein integritätsrelevantes Ereignis beobachtet, muss die Ursache untersucht werden (M)
- Liegt die Ursache in der Veränderung eines Barriere-Elementes, muss das Ausmaß festgestellt werden (M)
- Bei Veränderungen eines Barriere-Elementes, die mit diesem Standard nicht vereinbar sind, muss das Risiko aufgrund dieser Barriere-Veränderung unter Berücksichtigung der Wirksamkeit der verbleibenden Barrieren bewertet werden (M)
- Der Betreiber ist frei in der Wahl der Methodik, die Risiken zu bewerten (K)
- Abhängig vom Ergebnis der Risikobewertung müssen ggf. Maßnahmen festgelegt werden, die der vom Standard abweichenden, verminderten Wirksamkeit der Bohrungs-Barriere Rechnung tragen und einen sicheren Bohrungsbetrieb gewährleisten (M)
- Über die Verwendung der Bohrung bis zur Durchführung von ggf. festgelegten Maßnahmen muss zeitnah entschieden werden (M)
- Die Genehmigung der Ausnahme muss dokumentiert werden (M).

3. Empfehlungen zur Sicherstellung der Bohrungsintegrität

Die Umsetzung der in Kapitel 2 beschriebenen Anforderungen erfolgt unter Berücksichtigung der Akzeptanztabellen für die wichtigsten Bohrungselemente in Anhang B. Ergänzend können die in den nachfolgenden Abschnitten beschriebenen Maßnahmen durchgeführt werden. Der Darstellung von Maßnahmen, die für alle Bohrungstypen gelten, folgen Unterabschnitte mit zusätzlichen Praktiken, die bohrungstypübergreifend sind. Wird ein Bohrungstyp in einem Unterabschnitt nicht behandelt, werden die empfohlenen Maßnahmen durch die für alle Bohrungstypen geltenden Praktiken abgedeckt.

Die in diesem Kapitel aufgeführten Maßnahmen stellen Empfehlungen dar, die nicht auf jedes Bohrungsdesign anwendbar sind. Ein Anspruch auf Vollständigkeit ist bei der Fülle möglicher alternativer Maßnahmen nicht zu erheben.
3.1. Auslegungsgrundlagen

Ziel: Schaffung einer Informationsbasis für die Auslegung der Bohrung bestehend aus Informationen zu den Bedingungen im geologischen Untergrund und an der Oberfläche, sowie zur Bohrung und den erwarteten Betriebsbedingungen.

3.1.1. Auslegungsgrundlagen der Bohrung

Die Anforderungen an die Integrität einer Bohrung werden beeinflusst durch das Geschäftsziel der Bohrung und relevante Schutzziele und sind abhängig vom Umfeld insbesondere seiner Nutzungsart sowie den erwarteten Fluid- und Betriebsbedingungen.

Bohrungen werden charakterisiert durch die nachfolgenden Informationen:

PRAKTIKEN: CHARAKTERISIERUNG DER BOHRUNG
- Bohrungstyp
 - Produktions-, Einpress-, Versenk-, Speicher- oder Hilfsbohrung
 - Porenspeicher oder Kavernenbohrung
 - Gas, Öl, Wasser, Sole
 - Süß, sauer
 - Druckstufe
 - Temperaturklassen der Übertage-Ausrüstung
- Bohrungsart (vertikal/abgelenkt/horizontal/multilateral)
- Endteufe (Saigerteufe)
- Zielformation (Name und Gesteinsart)
- Maximal erwarteter Porendruck und Temperatur der Zielformation
- Fluidströme und Drücke
 - max. und min. erwartete Volumenströme (Mengen pro Zeiteinheit)
 - Fluiddrücke (am Kopf und in Reservoir Teufe)
 - Fluidtemperaturen
 - Fluidmengen
- Fluidsystem
 - Zusammensetzung der erwarteten Fluide
- Bohrungslokation
- erwarteter Test- und Behandlungsbedarf
- Lebensdauer

3.1.2. Auslegungsgrundlagen zum Schutz von Umwelt und Umfeld an der Oberfläche

Ziel: Bereitstellung aller Informationen über Oberflächengefährdungen und erwartete, wechselseitige Auswirkungen zwischen Bohrung und Umfeld, welche Einfluss haben können auf das Integritätsmanagement der Bohrung während ihrer geplanten Lebensdauer.
Die Anforderungen an die Integrität von Bohrungen werden beeinflusst durch Schutzgüter bzw. Schutzziele an der Oberfläche, wie sie z. B. in den in Anhang A enthaltenen Rechtsvorschriften dokumentiert und nach § 48 Abs. 2 BBergG zu berücksichtigen sind. Beispiele für Schutzgüter von Einfluss im Umfeld einer Bohrung sind u.a.:

- Trinkwasser
- Gesundheit/Unversehrtheit Dritter im Betrieb und außerhalb
- Schutzgebiete und geschützte Teile von Natur und Landschaft
- Schutzgebiete für Gewässer
- Kulturgüter
- Nutzung und Bebauung.

Integritätsanforderungen an Bohrungen können sich zum Beispiel auch aus Gefährdungen ergeben, wie:

- Nachbargrubenbaure oder Nachbarbohrungen
- Überschwemmungen
- Kampfmittel
- Bodensenkungen
- Industrietätigkeiten.

Die Feststellung von Oberflächengefährdungen kann u.a. durch folgende Praktiken erfolgen:

PRAKTIKEN: CHARAKTERISIERUNG DER OBERFLÄCHENBEDINGUNGEN

- Identifizierung bestehender Schutzgebiete (z. B. Wasserschutzgebiete, Naturschutzgebiete, Landschaftsschutzgebiete, Biotope, Archäologie etc.) bzw. laufender Planungen
- Identifizierung von Nachbargrubenbauen oder Bohrungen in unmittelbarer Nähe
- Feststellung von Nutzung und Bebauung (z. B. Landwirtschaft, bestehende Infrastruktur, Raumplanung etc.)
- Identifizierung von unterirdischen Leitungen, Kabeln, Funkstrecken, Luftfahrthindernissen etc.
- Feststellung besonderer Risiken wie natürliche Erdbebengefährdung, Kampfmittel, Bodensenkungsgebiete, industrielle und andere besondere Tätigkeiten
- Dokumentation von verfügbaren Daten und Analyseergebnissen.

3.1.3. Auslegungsgrundlagen zum Grundwasserschutz

Das Süßwasser in den Grundwasserkörpern muss vor Verunreinigungen und Schadstoffeinträgen geschützt werden. Aufgrund der lithologischen Ausbildung des geologischen Untergrundes reichen die nutzbaren, d.h. nicht versalzten Grundwasserressourcen in dem meisten der für einen Aufschluss durch Tiefbohrungen in Frage kommenden Gebiete Deutschlands in der Regel nur bis in Teufen von ca. 200 m [19].

Zur Charakterisierung von Untersuchungsgebieten bzw. deren potentieller Gefährdung sind folgende Praktiken üblich:

PRAKTIKEN: CHARAKTERISIERUNG VON NUTZWASSERHORIZONTEN

Beschreibung des oberflächennahen Untergrundes mit
3.1.4. Auslegungsgrundlagen zum Schutz von Deckgebirge / Barriere Formation

Ziel: Charakterisierung des Untergrundes im Hinblick auf zu erwartende Untertage-Gefährdungen insbesondere Gefährdungen gesteinsmechanischer und hydraulischer Art, welche die Bohrungsintegrität während des erwarteten Lebenszyklus der Bohrung beeinflussen.

Neben dem aus dem Gewicht des Deckgebirges resultierenden sogenannten Gebirgsdruck sind in manchen Gebieten auch tektonische Spannungen vorhanden, die die Stabilität des Bohrloches beeinflussen können.

Beispiele für Aktivitäten zur Charakterisierung des Deckgebirges sind:

PRAKTIKEN: CHARAKTERISIERUNG DES DECKGEBIRGES

- Beschreibung des strukturellen und lithologischen Aufbaus des Untergrundes (z. B. Kreideschichten, plastische Tone und Salze)
- Identifikation von möglichen Barriere-Schichten, Rissnetzwerken und Verkarstungen
- Identifikation und Bewertung geologischer Störungen und tektonischer Spannungen
- Quantifizierung des Porendruckes über die gesamte Bohrstrecke unter Berücksichtigung auch von Druckabsenkungen durch Förderung
- Beschreibung der erwarteten geochemischen Verhältnisse (H₂S, CO₂) über die gesamte Bohrstrecke
- Identifikation und Bewertung der Gefährdungen von bestehenden offenen, eingeschlossenen und verfüllten Bohrungen und Grubenbauten in unmittelbarer Nähe
- Dokumentation von verfügbaren Daten und Analyseergebnissen.
Typische Informationsquellen für eine Charakterisierung sind seismische und gravimetrische Informationen sowie Informationen aus Referenzbohrungen wie:

- Schichtenverzeichnisse und Bohrberichte
- Spülporen und Bohrlochmessungen zur Bestimmung von Lithologie und Gesteinseigenschaften
- Spü lungs verlust- und Zufluss- Verhalten (gesamte Bohrstrecke)
- u.U. Image-Logs sowie Mikrowiderstandsmessungen, die Aufschluss über Klüftigkeit geben (in der Regel nur für Reservoir-nahe Bereiche vorhanden)
- Porendruck-Messungen
- Formationsstabilitätsteste (FIT/LOT-Messungen)
- Integritätsprobleme bei anderen Bohrungen in ähnlichen Umgebungen sowie
- Studien zu Oberflächen- und Untertagebedingungen (Seismik, geologische Modellierungen, Lagerstättenmodellierungen, Senkungsstudien, Erdbebenhistorie etc.).

Die Informationen sollten verwendet werden, um die Auslegungsgrundlage der Bohrung zu erarbeiten sowie Gefährdungen und die daraus resultierenden Risiken zu identifizieren und zu bewerten.

3.1.5. Auslegungsgrundlagen mit Bezug zur Zielformation

Ziel: Charakterisierung der Zielformation (kohlenwasserstoffführendes Reservoir, Aquifer oder Salzschicht) im Hinblick auf Inhalt, Bedingungen und Ergiebigkeit sowie bei Kavernen mechanische Integrität sowie dauerhafte Dichtheit der Salzformation für die eingelagerten Medien.

Bohrungen bilden die Verbindung zwischen Erdoberfläche und der Zielformation, aus der produziert und/oder in die injiziert werden soll. Die produzierten und/oder injizierten Fluide stehen von Bohrungsfertigstellung bis zur Bohrungsverfüllung im Kontakt mit der ersten Barriere der Bohrung. Gefährdungen, die sich daraus ergeben können, sind insbesondere

- statische und im Betrieb dynamische Druck- und Temperatur-Bedingungen, die zu Ballooning/De-Ballooning, Längungen und Kürzungen führen können
- Fluide, die zu Korrosion oder Ablagerungen führen können
- Fluss-induzierte Belastungen, die zu Erosion (und Turbulenzen) führen können.

Beispiele für Aktivitäten zur Charakterisierung der Zielformation sind:

PRAKTIKEN: CHARAKTERISIERUNG DER ZIELFORMATION

- Charakterisierung des Reservoirs auf der Basis von Informationen aus Seismik und Referenzbohrungen
- Beschreibung von Reservoir-Inhalt und -Bedingungen, insbesondere Druck und Temperatur
- Beschreibung der erwarteten Produktivität/Injektivität und daraus abgeleitet erwarteter Betriebsbedingungen über die Lebensdauer der Bohrung

3.1.6. Dokumentation der Auslegungsgrundlagen

Die in dieser Lebenszyklusphase einer Bohrung gewonnenen Kenntnisse bilden die Auslegungsgrundlage und sind in einem Auslegungsgrundlagendokument (Basis of Design [1]) zu dokumentieren.

PRAKTIKEN: ARBEITSERGEBNISSE UND MÖGLICHE INHALTE DES AUSLEGUNGSGRUNDLAGEN-DOKUMENTS

- Dokumentation der allgemeinen Angaben zur Bohrung (Landepunkt, Teufe, etc.)
- Dokumentation von Geschäftszwecken und Lebenszyklus (Nutzungsstrategie, ggf. erforderliche Förder-/Injektionssysteme, Förderung und/oder Injektion und Aktivitäten während der Bohrungslebensdauer)
- Dokumentation der Umfeld Charakterisierung, die ein Ableiten der Gefährdungen erlaubt (Porendruck, Frackdruck, besondere Korrosionsrisiken etc.) und auf Basis der Gefährdungen und des geplanten Betriebes der Bohrung (Zufluss aus dem Reservoir in das Bohrloch und Ausfluss aus der Bohrung etc.) ein Ableitung der Anforderungen an den Bohrungsdesign
- Dokumentation des Bedarfs an weiterer Datengewinnung während der Herstellungsphase (z. B. Daten zur Herstellung jedes Bohrlochabschnittes, Messungen zur Zementbewertung, Formationsdrucktests, Sättigungsmessungen etc.) und der Betriebsphase (Datenerfassung zur Beurteilung der Barriere-Wirksamkeit, um daraus abzuleiten ob z. B. Druckmessgeräte im Bohrloch, Kontrollmessfühler usw. als Teil der Bohrungsauslegung vorzusehen sind)
- Qualitätssicherung und funktionsübergreifende Abnahme.

3.1.7. Zusätzliche Anforderungen an die Auslegungsgrundlagen von Einpress- und Versenkbohrungen

PRAKTIKEN: UNTERGRUND-CHARAKTERISIERUNG FÜR EINPRESS- UND VERSENKBOHRUNGEN

- Bestimmung des Frack-Initierungsdruckes (break down pressure) der Barriere-Formation bzw. aus Formations- oder Leak-off Testen oder adäquaten Berechnungsverfahren abgeleitete Untergrenzen dieses Druckes als Basis für die Festlegung von Injektionsdrücken, mit denen die Integrität der Barriere-Horizonte nicht gefährdet wird
- Prüfung der Kompatibilität von zur Versenkung bzw. zum Einpressen vorgesehenen Fluiden mit den entsprechenden geologischen Horizonten
- Für Versenkbohrungen: Bestimmung des maximal zulässigen Injektionsvolumens.

3.1.8. Zusätzliche Anforderungen an die Auslegungsgrundlagen von Porenspeicher-Bohrungen

PRAKTIKEN: UNTERGRUND-CHARAKTERISIERUNG FÜR PORENSPEICHER-BOHRUNGEN

- Für Speicher in Aquifern, Beschreibung der ersten Barriereeschicht über der Speicher-Formation und Bewertung ihrer Abdichtung.

3.1.9. Zusätzliche Anforderungen an die Auslegungsgrundlagen von Kavernen-Bohrungen

PRAKTIKEN: OBERFLÄCHEN- UND UNTERGRUND CHARAKTERISIERUNG FÜR KAVERNEN-BOHRUNGEN

- Feststellung der Topographie durch eine Null-Messung, z. B. durch Nivellierung oder vergleichbares Verfahren
- Detaillierte Beschreibung des Deckgebirges und Bewertung seiner Bohrbarkeitseigenschaften
- Bestimmung der Geometrie des Salzkörpers durch z. B. seismische, gravimetrische und Georadar Messungen, um die Lage der geplanten Kaverne (z. B. zum Rand) planen und bewerten zu können
- Bestimmung der Struktur des Salzkörpers im Zielbereich und seiner Zusammensetzung auf der Basis von Kernmaterial und Bohrlochmessungen für nicht-gekernte Bereiche aus Referenz- oder Explorationsbohrungen zur Datengewinnung
- Messung der Deckgebirgsdichte oder in situ Gebirgsdruckmessungen
- Feststellung der Gebirgsseigenschaften und Materialkennwerte des Salzes
- Durchführung von Laboruntersuchungen zur Bestimmung der mineralogischen Zusammensetzung, der Stratigraphie und der Löschlichkeitseigenschaften des Salzes
- Auswertung aller verfügbaren Daten und Analyseergebnisse und Durchführung numerischer Berechnungen im Rahmen der Festlegung von Bohrungslokation und Kavernen-Dimensionierung (Höhe und Durchmesser, Pfeiler etc.)
- Abschließende geologisch-gebirgsmechanische Bewertung zur Feststellung der Eignung des Salzkörpers zum Bau von Kavernen für die Salzgewinnung und/oder die Speicherung.

3.2. Auslegung

Um das Ziel zu erreichen ist erforderlich, dass die Barriere-Elemente über alle Lebenszyklus-Phasen hinweg den Fluss von Fluiden auf das innere der verrohrten Bohrung beschränken und einen Fluidaustausch zwischen unterschiedlichen Gesteinsschichten verhindern.

Basis der Auslegungsphase einer Bohrung sind die Dokumentationen der in Abschnitt 3.1 beschriebenen Auslegungsgrundlagen mit den nachfolgend beschriebenen Gefährdungen für die Bohrungsintegrität.

3.2.1. Gefährdungen

Ziel: Identifikation und Bewertung aller Gefährdungen für die Bohrungsintegrität als Basis für eine risikorechte Auslegung der Bohrungsbarriere-Elemente.

Typische Bedingungen für die unterschiedenen Bohrungstypen sind in Tabelle 1 wiedergegeben. Aus den Merkmalen ergeben sich potentielle Schadensquellen/ Gefährdungen.

PRAKTIKEN: QUANTIFIZIERUNG DER GEFÄHRDUNGEN

- Porendruck-Analyse (inkl. Shallow Gas Analyse)
- Formationsstabilitätsanalyse inkl. Analyse potentiell konvergierender Formationen sowie tektonische Spannungen
- Formationsfestigkeitsanalyse auf Basis von Modellen und Drucktesten, z. B. FIT, LOT, XLOT zur Bestimmung des Frack-Initierungsdruckes (break down pressure) bzw. abgeleitete Untergrenzen dieses Druckes
- Lastfallanalysen für hydraulische, mechanische und thermische Belastungen
 o Innen- und Außendruck
 o Zug, Druck, Torsion und Biegung
 o Temperatur
 o Ermüdungslasten aufgrund von Wechselbeanspruchungen (Druck, Temperatur, Biegemoment)
 o Hydratbildung
- Detaillierung der chemischen Belastungen
 o Korrosion
 o Ablagerungen (organisch, mineralisch, radioaktiv, Quecksilber)
- Detaillierung externer Gefährdungen und von Umwelt-Gefährdungen, z. B.
 o Außen-Korrosion tragender Komponenten aufgrund atmosphärischer Einflüsse
 o Außen-Korrosion der Futterrohre aufgrund korrosiver Grundwasserleiter
 o Ermüdung tragender Komponenten aufgrund mechanischer Wechselbeanspruchungen
 o Einwirkung äußerer Lasten aufgrund von seismischen Aktivitäten oder Bewegung von geologischen Störungen
3.2.2. Barriren und Barriere-Elemente in der Auslegungsphase

Die Ergebnisse der Quantifizierungen unter 3.2.1 liefern Informationen zur Bestimmung von Leistungsgrößen für die Elemente der Barriren, insbesondere zur Bestimmung ihrer Funktionalität, d.h. was sie leisten müssen, um Integrität herzustellen und aufrechtzuerhalten bzw. Risiken auf ein akzeptables Maß reduzieren [12].

Typische Barriere-Elemente sind in Tabelle 2 aufgelistet.

3.2.3. Leistungsgrößen und Nachweise der Norm-Erfüllung in der Auslegungsphase

Bohrungsbarrieren und die in ihnen eingesetzten Elemente müssen den Belastungen während der Lebensdauer einer Bohrung standhalten, die in 3.2.1 quantifiziert wurden. Der hierfür notwendige Auslegungs- und Auswahlprozess wird durch Leistungsgrößen spezifiziert.

PRAKTIKEN: LEISTUNGSNORMEN

- Festlegen der Qualifizierungsanforderungen für Bohrungskomponenten (z.B. Nenndrücke, Werkstoffe, etc.)
- Bestimmung der Auswahlprozesse für Elemente und Komponenten
- Bestimmung von Kriterien für z.B.
 - Qualifizierungsprüfungen (z.B. Kontrollen beim Hersteller, Kontrolle der Futterrohrverwendung, Zementation, etc.)
 - Korrosions- und Erosionsbeständigkeit von Werkstoffen
 - Funktionsanforderungen
 - Anforderungen zur Prüfbarkeit
 - Berücksichtigung der Anforderungen für Bohrlochkopf-Komponenten nach API Spec. 6A
 - Besondere Korrosionschutzerfordernisse.

3.2.4. Betriebsgrenzen in der Auslegungsphase

Um Übereinstimmung mit allen Komponentenspezifikationen, einschließlich der jeweils zutreffenden Auslegungs- oder Sicherheitsbeiwerte und Leistungsgrößen, sicherzustellen, werden Bohrungs-Betriebsgrenzen festgelegt. Mit der Festlegung von Höchst- und Mindestwerten für die zulässigen Betriebsparameter wird die Voraussetzung geschaffen, die Bohrung innerhalb der Auslegungsgrenzen ihrer Barriere-Elemente zu betreiben.
PRAKTIKEN: BOHRUNGSBETRIEBSGRENZEN

- Festlegung der Betriebsparameter mit Betriebsgrenzen unter Berücksichtigung von Anfahr- und Abfahrvorgängen
- Festlegung der Betriebsgrenzen mit Höchst- und Mindestwerte für zulässige Betriebsparameter relevanter Größen im Einklang mit gesetzlichen und behördlichen Vorgaben von z. B.
 o Förder-/Injektionsdrücke und Ringraumdrücke
 o Förder-/Injektionsraten für Öl/Gas/Wasser und ihre erwarteten Anteile
 o Zusammensetzung der geförderten Fluide, z. B. H₂S, CO₂, Sand usw.
 o Zusammensetzung der injizierten Fluide mit Bestimmung möglicher Gefährdungspotentiale für die Bohrungsintegrität
 o Korrosionsraten
 o Wanddicken von Steigrohr und Futterrohr
 o kathodisches Schutzsystem.

Die Qualitätssicherungs-/Qualitätskontroll-Anforderungen für die unterschiedlichen Bohrungskomponenten, Ausrüstungen oder Prozesse sollten das für die Bohrung identifizierte Gefährdungspotential widerspiegeln. Besondere Anforderungen gelten für Notabschaltungs-Systeme (Emergency Shut-Down Systeme, ESD), z. B. automatische Absperreinrichtungen wie UTSV und hydraulisch angesteuerten Absperrarmaturen.

Abbildung 4: Beispiel eines BohrungsbARRIERE-Diagramms mit Prüfnachweisen
Beispiele von Barriere-Schemata für weitere Bohrungstypen finden sich in Anhang C.

PRAKTIKEN: PLANUNG DER AUSRÜSTUNG FÜR MONITORING UND ÜBERWACHUNG

- Identifizierung und Berücksichtigung der Anforderung, die aus notwendigen Monitoring- und Überwachungsmaßnahmen resultieren, z. B.
 - Monitoring-Systeme für den Ringraumdruck
 - Zugang zum Bohrloch für künftige Überwachungsmaßnahmen
 - Messeinrichtungen im/am Bohrloch.

3.2.5. Bohrungsauslegung allgemein

Ziel: Spezifikation der Auslegung der Bohrung und ihrer Barrieren und Barriere-Elemente, die die Gefährdungen beherrschen bzw. auf ein akzeptables Maß reduzieren und die Dokumentation der Auslegung in einem entsprechenden Planungsdocument.

In Kenntnis der Leistungsnormen und unter Berücksichtigung der Ausführungen unter 3.2.1 werden in der Auslegungsphase die spezifischen Vorschriften für die Bohrungsherstellung entwickelt, darin eingeschlossen der Einbau und die Verifizierung der Bohrungselemente, und das Ergebnis in einem Planungsdocument zur Bohrung dokumentiert.

PRAKTIKEN: BOHRPFAD

- Festlegung eines Bohrpfades, der erkennbare Risiken mindert oder vermeidet, z. B. lokale Zonen tektonischer Spannungen, Bohrungskollision bei Cluster-Bohrungen etc.
- Beachtung von Anforderungen an eine ggf. notwendige Vertikalität.

3.2.6. Spülungsprogramm

PRAKTIKEN: SPÜLUNGSPROGRAMM

- Wahl eines Spülungsprogramms, das während der Herstellung der Bohrung Zuflüsse in das Bohrloch und Verluste aus dem Bohrloch verhindert bzw. minimiert
 - Ermittlung der notwendigen/zulässigen Dichtbereiche der Spülung auf der Basis von Informationen aus Referenzbohrungen und/oder mit Prognosemethoden zur Porendruck- (siehe
auch TAMU-PEMEX [21]) und Frackdruck-Bestimmung (z. B. Hubbert & Willis, Matthews & Kelly, Ben Eaton [22], Hou [23])
- Berücksichtigung von dynamischen Druckbeanspruchungen, die während der unterschiedlichen bohrtechnischen Arbeiten entstehen, durch entsprechende Sicherheitsauf- bzw. abschläge zum ermittelten notwendigen/zulässigen Dichtebereich (ECD – Equivalent Circulation Density)
 - Wahl eines Spülungsprogramms, das Bohrkleinaustrag und Formationsstabilität gewährleistet
 - Festlegung der Dichte (Bohrlochinnendruck), um die Bohrlochwand über den Filterkuchen mechanisch zu stützen. Einstellung physiko-chemischer Eigenschaften der Spülung, um Festigkeitsverluste der durchteuften Gesteine (z. B. Tonsteine) zu verhindern
 - Festlegung der rheologischen Eigenschaften der Bohrspülung, im Zusammenhang mit den angestrebten Bohrparametern, um das erbohrte Bohrklein optimal austragen bzw. bei Pumpenstillstand in Schwabe halten zu können

3.2.7. Verrohrungsprogramm

Für die Spezifikation des Verrohrungsprogramms gelten die folgenden Praktiken.

PRAKTIKEN: VERROHRUNGSDESIGN/VERROHRUNGSPROGRAMM

- Wahl eines Verrohrungsprogramms, das unter den gegebenen geologischen und technischen Bedingungen Gewähr bietet für eine sichere Herstellung und einen sicheren Betrieb der Bohrung
 - Anzahl der Rohrtouren in Abhängigkeit von den geologischen Gegebenheiten (Spülfenster)
 - Futterrohdurchmesser in Abhängigkeit vom Geschäftsziel der Bohrung
 - Absetzen des Standrohres in einem geeigneten tragfähigen Gestein oder nach Erreichen eines vorgegebenen Energiewertes zum Einrammen, um einen ersten Spülungskreislauf ohne Unterspülen der Bohranlage herstellen zu können. Ggf. bohren/zementieren des Standrohres, wenn zum Abdecken der oberflächennahen Grundwasserschichten größere Teufen erreicht werden sollen
 - Absetzen der Ankerrohrtour unterhalb der oberflächennahen Nutzwasserhorizonte in einer standfesten, integren Formation
 - Wahl der Absetzteufen der nachfolgenden Rohrtouren unter Berücksichtigung der Gebirgsfestigkeit und der erwarteten Drücke am Rohrschuh bei der Vertiefung des Bohrlochs, die ein Aufbrechen des Gebirges vermeiden, z. B. wenn ein unerwarteter Zufluss von Formationsfluiden stattfindet, der auszirkuliert werden muss

- Auslegung der Futterrohre, die den Belastungen während der Lebensdauer der Bohrung standhalten
- Quantitative Überprüfung der Rohdimensionierungen durch Benutzung von akzeptierten und in technischen Regelwerken dokumentierten Rechenmethoden (insbesondere für Bereiche konvergierender Salze)
- Berücksichtigung der Untertage-Umgebungstemperatur für die Minderung der Streckgrenze (sog. Warmstreckgrenze)
- Für abgelenkte und horizontale Bohrungen, Berücksichtigung von Biegebelastungen während des Einbaus, insbesondere bei verschweißten Rohrtouren (zur Vermeidung von Winkelfehlern in der Rohrachse)
- Auslegung des Rohrmaterials für eventuell auftretende korrosive Fluide
- Wahl von Verbindungstyp oder Fügetechnik (abhängig von den Dichtheitsanforderungen).

3.2.8. Zementationsprogramm

PRAKTIKEN: ZEMENTATIONSPROGRAMM

Für die Spezifikation des Zementationsprogramms gelten die folgenden Praktiken.
- Wahl einer geeigneten Zementation, die zusammen mit der Verrohrung den Belastungen während der Lebensdauer der Bohrung standhält
 - Untersuchung von Referenzbohrungen auf Zementationsprobleme
 - Planung der Ankerrohtour-Zementation bis zu Tage
 - Planung der Zementation von Zwischenrohtour und Produktionsrohtour – abhängig von den technischen und geologischen Gegebenheiten – bis zu einer planmäßig festgelegten Teufe, um definierte Schutzziele zu erreichen. Grundsätzlich: Mindestens 100 m MD über Futterrohschuh. Reicht die Rohrtour durch eine Zuflusszone, Zementation von mindestens 200m MD über diese Zone. Kann diese Bedingung für einen Produktionsliner nicht erfüllt werden, kann die zementierte Länge mit der vorangegangenen Zementationslänge zusammengefasst werden, um 200m MD zu erreichen
 - Zentrerung, um die Ausbildung eines möglichst gleichmäßigen Zementmantels um die eingebauten Rohre im Bereich der zu zementierenden Bohrlochstrecken zu erreichen (möglichst großes „Stand-off Ratio“)
 - Planung von Zementgüten/-dichten auf der Basis von Poren- und Frackdruck-Prognosen sowie erwartetem Druck, Temperatur und mechanischen und chemischen Belastungen und Wechselbelastungen.
 - Beschränkung von Zusätzen für die Zementation der Rohrtouren, die mit oberflächennahen Nutzwasserhorizonten in Kontakt stehen, auf Substanzen für die Unbedenklichkeits-Bescheinigungen vorliegen
 - Abstimmung der Dichten und der rheologischen Eigenschaften der Spü lung, der Zementbrühe und des Trennfluids zwischen Spülung und Zementbrühe, sodass eine maximale Spülungsverdrängung durch Trennfluid und Zementbrühe erreicht wird
 - Auslegung der Abbindezeit (Versteifungszeit) der Zementbrühe unter Berücksichtigung der realen Bohrlochtemperatur
 - Nachweis der gewünschten Eigenschaften der Zementrezeptur durch Labor-Untersuchung.
3.2.9. **Programm für Bohrlochkopf und Eruptionskreuz**

Für die Spezifikation von Bohrlochkopf und Eruptionskreuz gelten die folgenden Praktiken:

PRAKTIKEN: BOHRLOCHKOPF UND ERUPTIONSKREUZ AUSLEGUNG

- Spezifikation des Bohrlochkopfes entsprechend den erwarteten Betriebsbedingungen und Belastungen
 - Festlegung der Temperatur Klassen abhängig von den erwarteten Temperatur-Bedingungen, bei Cluster-Bohrungen unter Berücksichtigung möglicher Störfälle (Feuer)
 - Festlegung der Materialauswahl abhängig vom durchströmenden Medium
 - Festlegung der Abdichtungen der Rohrtouren gegeneinander
 - Festlegung der Zugänge zu den einzelnen Ringräumen zum Anschluss von Mess-Einrichtungen, mit denen der Druck in den Ringräumen zwischen den fest eingebauten Rohrtouren beobachtet werden kann
- Spezifikation des Eruptionskreuzes mit Absperrreinrichtungen entsprechend der erwarteten Betriebsbedingungen und Belastungen, z. B.
 - Festlegung der Anzahl der Absperrreinrichtungen
 - Festlegung der Druckstufen abhängig von den erwarteten maximalen Belastungen
 - Festlegung der Temperatur Klassen abhängig von den erwarteten Temperatur-Bedingungen, bei Cluster-Bohrungen unter Berücksichtigung möglicher Störfälle (Feuer)
 - Festlegung von Materialklassen und Werkstoffen abhängig vom durchströmenden Medium
 - Festlegung von Innendurchmesser und Druckstufe der Absperrreinrichtungen und bei betätigten Absperrreinrichtungen Festlegung ihres Antriebes.
3.2.10. Komplettierungsprogramm

Vor Aufnahme ihres bestimmungsgemäßen Betriebes werden Bohrungen „komplettiert“. Die Komplettierung erfolgt, wenn der Bohrprozess abgeschlossen ist. Im Rahmen der Komplettierung werden in der Regel nach Verrohrung und Zementation des Zielhorizontes durch die letzte Rohrtour

- die Steigrohtour in das Bohrloch eingebracht und ggf. mit einem Produktionspacker in der Produktionsrohtour abgedichtet und verankert
- spezielle, von der betrieblichen Nutzung abhängige Komponenten eingebaut
- das Eruptionskreuz montiert.

Hierzu sind folgende Praktiken üblich:

PRAKTIKEN: KOMPLETTIERUNGSPROGRAMM

 - Spezifikation der Steigrohtour insbesondere
 - Material, abhängig von den mechanischen und chemischen Belastungen ausgelöst insbesondere durch Druck und Temperatur und Änderungen davon sowie erwartete Fluide, mit denen sie in Kontakt kommen/kommen können unter Berücksichtigung erschwerender z. B. strömungsmechanischer Bedingungen, wie z. B. Änderungen des Innendurchmessers
 - Geometrie (Durchmesser und Wanddicke), abhängig vom Geschäftsziel der Bohrung und den produktions-technischen Bedingungen
 - Teufen (TVD und MD)
 - Auswahl der Steigrohr-Verbindungen in Abhängigkeit von den mechanischen Belastungen und Anforderungen zur Dichtheit

- Bei verschraubten Rohren: Spezifikation der Verbinder unter Berücksichtigung der Vorgaben für API und Non-API Verbinder

- Bei verschweißten Rohren: Spezifikation der Fügtechnik

- Spezifikation von geplanten Spezialelementen für die erwarteten Betriebszustände und Fluide, zum Beispiel

 - Landenippel, z. B. in Oberflächennähe zum Setzen von Sicherheitsventilen und unterhalb des Packers zum Setzen von Stopfen und Messgeräten
 - Ausführung von Übergängen im Steigrohr, die Turbulenzen minimieren
 - Side Pocket Mandrels bei Injektionsbedarf in den Strang
 - ggf. Durchführung von Injektionsleitungen durch Produktionspacker
 - Chemische Injektionsleitungen/-systeme (CIL) zur Dosierung von z. B. Korrosions- und Scale-Inhibitoren

- ggf. Planung von Maßnahmen zur Beherrschung produktionstechnischer Probleme, z. B. Sandproduktion

 - Planung geeigneter Filter
 - Gravel Pack

- ggf. Planung von Maßnahmen zur Beherrschung besonderer Korrosionsrisiken

 - Inhibierung
kathodischer Korrosionsschutz
lokaler Korrosionsschutz

- Zusammenführen der Spezifikationen in einem Design, das Bohrungsintegrität während aller vorhergesehenen Lebenszyklus-Phasen gewährleistet, darin eingeschlossen die Workoverphase mit einem möglichen Ausbau der Komplettierung.

3.2.11. Dokumentation der Auslegung

Die Dokumentation der vorgenannten Arbeiten erfolgt in Planungsdokumenten (z. B. Bohrprogramm, Komplettierungsprogramm, etc.). Die Dokumentationen sollten u. a. Folgendes umfassen:

PRAKTIKEN: ARBEITSERGEBNISSE UND MÖGLICHE INHALTE DER PLANUNGSDOKUMENTE AM ENDE DER BOHRUNGSÄUSLEGUNGSFAHSE
- Dokumentation zur geplanten Bohrung, z. B.:
 - Porendruckdiagramm und geologische Angaben
 - Betriebsweise
 - Darstellung der geplanten Bohrungssituation, inkl. von z. B. Futterrohtour-Absetzteufen und festgelegten Teufen für Packer, SPMs, UTSVs und sächliche sonstige Einrichtungen
 - Spezifikationen der Bohrungsausrüstung inkl. Bohrlochzement und Zementation
 - Bohrungsbarriere-Pläne, einschließlich Bohrungsbarriere-Schema, siehe Abbildung 4
 - Geplante Bohrungs-Betriebsgrenzen
 - Leistungsnormen für die Auslegung, einschließlich Verifizierungsanforderungen
 - Notwendige Spezifikationen für Überwachung und Monitoring.

3.2.12. Zusätzliche Anforderungen an die Auslegung von Erdgasbohrungen

Den besonderen Bedingungen für Erdgasbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: AUSLEGUNG VON ERDGASBOHRUNGEN

Große Teufe
- Bei Einbau eines Produktionsliners, vollständige Zementierung

Produktionsmedium Gas
- Auslegung von Produktionsrohtour und Steigrohr mit gasdichten Verbindungen mit Metall auf Metall Dichtung (sog. Premium-Verbinder) mit protokollierter, drehmomentkontrollierter Verschraubung (z. B. Torque-Turn-Diagramm)
- Für Rohrtouren unter extremen Belastungen: ggf. Anpassung der Zementstein-Eigenschaften, um die Bildung von Rissen im Zementmantel im Zuge von hohen Wechselbelastungen zu verhindern
- Komplettierungsplanung mit einem Produktionspacker zur festen Verankerung des Steigrohrstranges und Bildung eines Ringraumes zwischen Steigrohr und Produktionsrohtour
- Auslegung von Packer und Steigrohrtour für die erwarteten Lagerstättenfluid und Betriebszustände, siehe auch 3.2.10
- Planung von Vorrichtungen im Rohrschuh- und Bohrlochkopf-Bereich des Förderstrangs, die es ermöglichen, den Förderstrang durch Einbau geeigneter Rückschlagventile oder Stopfen abzusperren
- Planung einer Absperreinrichtung im Förderstrang, die den Förderstrom im Bohrloch bei Bruch der Bohrlochverschlüsse selbsttätig unterbricht, wenn das technische open-flow Potential größer ist als 400 000 m³/Tag, der Schwefelwasserstoffgehalt im Förderstrom größer ist als 1,0 Vol.-% oder benachbarte Bohrungen im Falle eines Ausbruches gefährdet werden. Abhängig von der anwendbaren BVOT muss diese Absperreinrichtung zusätzlich von übertage zu betätigt sein.

- Planung einer Absperreinrichtung hinter dem Bohrlochkopf, die das Bohrloch selbsttätig schließt, wenn der betriebliche Mindestdruck in der von der Bohrung abgehenden Rohrleitung unterschritten wird.

- Planung von 3 Absperrarmaturen (2 Mastervalves, 1 Wingvalve).

- Planung zur Füllung des Ringraumes zwischen Steigrohr und Produktions-Rohrtour mit einer Ringraumflüssigkeit, die die angrenzenden Rohre schützt ohne die Betriebsgrenzen zu verletzen sowie eine kontinuierliche Überwachung der Ringraumdruckverhältnisse zulässt:
 - Art und Volumen der Ringraum-Flüssigkeit
 - Zusammensetzung der Ringraum-Flüssigkeiten unter besonderer Berücksichtigung korrosionsschützender Zusatzstoffe.

Temperatur Wechselbeanspruchungen

- Wenn aufgrund der Bohrlochkonstruktion Vorspannung nicht möglich sind (z. B. Compact Wellhead): Auslegung von Steigrohren, Produktionspackern und Verbindungen, die den erwarteten Spannungen widerstehen.

- Alternativ zur den vorgehend beschriebenen Vorgehensweisen: Nutzung von Einbauten, in denen sich das Steigrohrende bei temperaturbedingten Längenänderungen bewegen kann, ohne dass die Abdichtung des Ringraumes verloren geht. Dabei besonderes Augenmerk auf die Dichtsysteme der Einbauten legen.

Mechanische Belastungen
- Bei Einsatz sich bewegender Förderhilfsmittel im Bohrloch, z. B. zum Flüssigkeitsaustrag aus hochverwässerten Bohrungen (z. B. Plungerlift), Barriere-Auslegung für Abnutzung oder Abnutzungsmin- derung.

Chemische Belastungen

- Im Falle von Sauergasbohrungen, Auswahl Sauergas-fester Materialien wo technisch erforderlich.

- Im Falle von Sauergasbohrungen mit elementarer Schwefel-Produktion: Planung geeigneter Komplettierungen für die Injektion von Schwefellösemittel (konzentrisch, CIL oder auch Kapillar Leitung) und Auswahl von Schwefellösemitteln, die der Zusammensetzung der produzierten Fluide Rechnung trägt.

3.2.13. Zusätzliche Anforderungen an die Auslegung von Erdölbohrungen

Den besonderen Bedingungen für Erdöl-bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:
PRAKTIKEN: AUSLEGUNG VON ERDÖLBOHRUNGEN

Druck und Teufe:
- Verrohrungsschema in der Regel ohne Zwischenrohrtour und ohne zementierten Liner als Regelfall
- Bei erwartetem open-flow Potential,
 - Planung der Bohrungen mit zwei Barrieren wenn technisch möglich, sonst Anwendung von Minderungsmaßnahmen
 - Planung von Vorrichtungen im Rohrschuh- und Bohrlochkopf-Bereich des Förderstrangs, die es ermöglichen, den Förderstrang durch Einbau geeigneter Rückschlagventile oder Stopfen abzusperren
 - Planung einer Absperreinrichtung im Förderstrang, die den Förderstrom im Bohrloch bei Bruch der Bohrlochverschlüsse selbsttätig unterbricht, wenn das technische open-flow Potential größer ist als 100 m³/Tag Nassöl. Ausnahme: die Eigenschaften des geförderten Erdöls oder die durch Einbau der Absperreinrichtung bedingte Betriebsweise der Bohrungen stehen dem entgegen. Abhängig von der anwendbaren BVOT muss diese Absperreinrichtung zusätzlich von übertage zu betätigen sein
 - Planung einer Absperreinrichtung hinter dem Bohrlochkopf, die das Bohrloch selbsttätig schließt, wenn der betriebliche Mindestdruck in der dem Bohrloch unmittelbar nachgeschalteten Einrichtung oder in der von der Bohrung abgehenden Rohrleitung unterschritten wird
 - Üblicherweise Planung eines Doppel-Preventers, der um die Polierstange und blind abdichtet.

Grundsätzlich gilt für alle Erdölbohrungen:
- Alle Futterrohr touren im Minimum flüssigkeitsdicht

Besonderheiten in der Betriebsphase: Förderhilfsmittel

Mechanische und chemische Beanspruchungen
- Auslegung von Bohrungsbarrieren für Abnutzung durch sich bewegende Förderhilfsmittel in Bohrungen mit Abschnitten starker Krümmung, bzw. alternativ Planung von Komponenten zur Minde rung mechanischer Beanspruchungen, z. B. Protektoren für Tiefpumpengestänge

PRAKTIKEN: AUSLEGUNG VON THERMAL-ÖLBOHRUNGEN

Temperatur und Wechselbeanspruchung:
- Auswahl von Rohren und Verbindern, die den temperaturbedingten Belastungen ohne Versagen standhalten
- Material-Auswahl unter Berücksichtigung des möglichen Auftretens von H₂S
- Einsatz von Thermalzementen
- Wärmespannungen im Förderstrang und am Bohrlochkopf sind zu berücksichtigen, z. B. durch Aufgabe von Vorspannungen
3.2.14. Zusätzliche Anforderungen an die Auslegung von Einpress- und Versenkbohrungen

Den besonderen Bedingungen für Einpress- und Versenkbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: AUSLEGUNG VON EINPRESS- UND VERSENKBOHRUNGEN

Komplettierungsplanung mit einem Produktionspacker zur Bildung eines Ringraumes zwischen Steigrohr und Produktionsrohrtour für Druckbeobachtung und Füllen des Ringraumes mit einem geeigneten Schutzmedium

Druck und Teufe
- Bei erwartetem open-flow Potential („unter innerem Überdruck“):
 - Planung der Bohrungen mit zwei Barrieren
 - Planung eines Rückschlagventils oder einer Absperreinrichtung am Bohrlochkopf, die ein Zurückfließen der eingeleiteten Stoffe verhindert oder die Bohrung selbsttätig schließt, wenn der betriebliche Mindestdruck im vorgeschalteten System unterschritten wird
 - Aufnahme einer Vorrichtung in den Förderstrang, die es ermöglicht, den Förderstrang durch Einbau einer geeigneten Einrichtung abzusperren
- Planung von mindestens 2 Absperrarmaturen (z. B. 1 Mastervalve, 1 Wingvalve).

Injektionsmedium
- Treten beim Betrieb von Versenkbohrungen schädliche Gase, Nebel oder Dämpfe auf, muss der zur Einleitung dienende Förderstrang der Bohrung entweder aus einem geschlossenen System oder über eine zuverlässig wirkende Schleuse beaufschlagt werden, die den Austritt der Gase, Nebel oder Dämpfe verhindert
- Bei Zuführen gefährlicher Gase oder Flüssigkeiten in erheblichem Umfang: Planung eines Rückschlagventils oder einer selbsttätig wirkenden Absperreinrichtung im Förderstrang.

Mechanische/thermische Beanspruchung in der Betriebsphase: Druckbeaufschlagung
- Festlegung der Betriebsgrenzen für den Injektionsdruck, mit dem die Integrität der Barriere-Horizonte nicht gefährdet wird
- Ggf. Planung von Einrichtungen zur Überwachung und Steuerung des Injektionsdrucks
- Ggf. Planung von Einrichtungen zur Überwachung des statischen Porendrucks
- Festlegung der Ringraumdruck-Betriebsgrenzen
- Planung von Überwachungseinrichtungen zur Kontrolle von Ringraumdruckänderungen.

PRAKTIKEN: AUSLEGUNG VON EINPRESSBOHRUNGEN FÜR WÄRMEVERFAHREN

3.2.15. Zusätzliche Anforderungen an die Auslegung von Porenspeicher-Bohrungen

Den besonderen Bedingungen für Poren-Speicherbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird durch die folgenden Praktiken Rechnung getragen, die über die in 3.2.12 für Erdgas-Förderbohrungen dokumentierten Praktiken hinausgehen:
PRAKTIKEN: VON PORENSPEICHER-BOHRUNGEN

- Auslegung auf maximalen Betriebsdruck
- Planung einer AbsperrEinrichtung im Förderstrang, die den Förderstrom im Bohrloch bei Bruch der Bohrlochverschlüsse selbsttätig unterbricht (unabhängig vom openflow Potential)
- Abhängig von der anwendbaren BVOT muss diese AbsperrEinrichtung zusätzlich von übertage zu betätigen sein oder kann als „Velocity Valve“ zum Verschluss des Bohrloches bei Überschreiten eines vorbestimmten Wertes für die Geschwindigkeit des Fördermediums im Steigrohr geplant werden
- Einbau kurzer, dickwandiger Rohrstücke (Flow Couplings), in Bereichen von Querschnittsänderungen, in denen turbulente Strömungen erwartet werden, um ein vorzeitiges Versagen aufgrund von Erosion und turbulenzverstärkter Korrosion zu verhindern
- Planung von 2 Übertage-Absperrarmaturen (1 Mastervalves, 1 Wingvalve).

3.2.16. Zusätzliche Anforderungen an die Auslegung von Flüssigkeitskavernen-Bohrungen

Den besonderen Bedingungen für Flüssigkeitskavernen-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen.

PRAKTIKEN: AUSLEGUNG VON FLÜSSIGKEITSKAVERNEN-BOHRUNGEN

- Wahl eines S-Form Bohrpfades für horizontal ausgelenkte Bohrungen mit vertikalem Verlauf am Kopf- sowie im geplanten Kavernenbereich
- Planung von Maßnahmen zur Beherrschung möglicher Gas-Einschlüsse im Salz, z. B. im Salz: Bohren mit Preventer
- Standrohr, Ankerrohrtour, Produktionsrohrtour als typisches Verrohrungsschema
- Standrohrreinbauteufe bis unterhalb Trinkwasserhorizonte üblich
- Auslegung der Futterrohre im Salzbereich auf den erhöhten Außendruck
- Absetzteufe der Ankerrohrtour möglichst im Cap Rock/Top Salz
- Absetzteufe der Produktionsrohrtour als letzte zementierte Rohrtour abhängig von den lokalen Gegebenheiten, in der Regel mehr als der maximale Kavernendurchmesser unter Top Salz
- Bei Solen mit Stickstoff-Blanket: Verwendung gasdichter Verbinder oder Schweißverbindungen für die Produktionsrohrtour
- Salzspülung und Salzzement zum Bohren/Zementieren der Salzbereiche
- Zementieren der letzten zementierten Rohrtour im Salz bis zutage
- Planung eines geschlossenen Kontroll- oder Schutzringraum innerhalb der Produktionsrohrtour und Ausrüstung mit Produktionspacker, um die Druckentwicklung in diesem Ringraum überwachen und steuern zu können
- Befüllen und Entleeren über eine frei hängende Rohrtour bis in den Sumpfbereich der Kaverne
- Für den Umschlag des Speichergutes mit einem anderen Medium, Planung von selbsttätig wirkenden AbsperrEinrichtungen für beide Eingänge des Bohrlochkopfes. die das Bohrloch schließen, wenn der betriebliche Mindestdruck unterschritten wird. Bei Speicherkavernen für Erdöl oder flüssige Erdölzerzeugnisse können anstelle von AbsperrEinrichtungen fernbetätigte Absperrschieber verwendet werden, wenn diese von der ständig besetzten Stelle aus jederzeit geschlossen werden können
- Zur Sicherstellung eines dichten Bohrungsabschlusses, Planung doppelter Seiten-AbsperrEinrichtungen soleseitig und flüssigkeitseitig.
3.2.17. Zusätzliche Anforderungen an die Auslegung von Gaskavernen-Bohrungen

Den besonderen Bedingungen für Gaskavernen-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird durch die folgenden Praktiken Rechnung getragen, die über die in 3.2.16 für Flüssigkeitskavernen-Bohrungen dokumentierten Praktiken hinausgehen:

PRAKTIKEN: AUSLEGUNG VON GASKAVERNEN-BOHRUNGEN

- Planung von gasdichten Verbindern oder Verschweißen der letzten zementierten Rohrtour und der Steigrohrtour
- ggf. Aufgabe von Rohrspannungen auf die Förderrohrtour abhängig von den lokalen Gegebenheiten
- Planung eines geschlossenen Kontroll- oder Schutzingraum innerhalb der Produktionsrohrtour und Ausrüstung mit Produktionspacker, um die Druckentwicklung in diesem Ringraum überwachen und steuern zu können
- Planung einer Komplettierung, die ein Ab sperren der Bohrung von der Kaverne ermöglicht, z. B. Produktionsrohrtour
- Planung einer Absperreinrichtung im Förderstrang, die den Förderstrom im Bohrloch bei Bruch der Bohrlochverschlüsse selbsttätig unterbricht
- Zur Sicherstellung eines dichten Bohrungsabschlusses, Planung von zwei übertägigen Absperrarmaturen (1 Mastervalve, 1 Wingvalve).

3.3. Herstellung

Ziel: Umweltverträgliche Umsetzung der Planung zur Herstellung einer Bohrung, mit der ihre Geschäftsziele und Schutzziele erreicht werden, und Nachweis der Wirksamkeit der geschaffenen Barrieren unter Nutzung der definierten Akzeptanzkriterien, siehe auch Anhang B.

Auf der Basis der Planungsdoxumente mit ihren spezifischen Vorschriften für die Herstellung der Bohrung samt Einbau und Verifizierung der Bohrungsbarrieren werden die Elemente festgelegt, deren Herstellung erforderlich ist, und die Verifizierungsaufgaben, die auszuführen sind, um eine spezifikationsgerechte Herstellung nachzuweisen. Abweichungen von der Auslegung, die eine erneute Validierung hinsichtlich der identifizierten Gefährdungen und Risiken erfordern, werden behandelt. Nichtübereinstimmung oder Abweichungen während der Herstellung muss durch einen Änderungsmanagement Prozess, siehe 2.6, behandelt werden, für den der Bohrungs-Betreiber klare Regeln haben sollte.

PRAKTIKEN: HERSTELLUNG DER BARRIERE-ELEMENTE UND VERIFIZIERUNG

- Anlieferung der Bohrungsbarriere-Elemente an die Bohrstelle oder in ein Zwischenlager mit entsprechender Dokumentation, auf deren Basis die gelieferte Ausrüstung vor Einbau in das Bohrloch auf Übereinstimmung mit den Spezifikationen der Bohrungsauslegung überprüft wird

PRAKTIKEN: EINBAU DER BARRIERE-ELEMENTE UND VERIFIZIERUNG

- Sicherstellen, dass die in der Auslegungsphase identifizierten Bohrungsbarriere-Elemente eingebaut werden
- Sicherstellen, dass die Barriere-Elemente bei Einbau entsprechend den Spezifikationen der Bohrungsauslegung und Festlegungen des Bohrprogramms verifiziert und Aufzeichnungen derartiger Verifizierungen aufbewahrt werden

Schlüsselaspekte, die in der Herstellungsphase besonderer Beachtung bedürfen, sind
- Beherrschung des Porendruckes durch die Barriere-Elemente Spülung und Absperreinrichtungen, die sogenannten Blow-Out-Preventer (BOP)
- Stabilisierung und dauerhafte Abdichtung der durchteuften Formationen durch die Barriere-Elemente Verrohrung und Zementation
- Komplettierung der Bohrung zur Gewährleistung einer sicheren Nutzung
- Dichter Verschluss des Bohrloches durch die Barriere-Elemente Bohrlochkopf und Eruptionskreuz mit Absperreinrichtungen.

3.3.1. Kontrolle von Porendruck und Bohrloch-Stabilität bei der Herstellung

PRAKTIKEN: BOHRSPÜLUNGSEINSATZ
- Fortlaufende Überprüfung der Spülungseigenschaften durch Messungen
- Anpassung der Spülung, insbesondere des notwendigen Dichtebereiches, um Abweichungen insbesondere vom erwarteten Porendruck Rechnung zu tragen.

3.3.2. Abdichtung der durchteuften Formationen bei der Herstellung

Die Abdichtung zur Formation erfolgt durch Rohre und Zementation des Ringraumes hinter diesen Rohren. Für den Einbau der Verrohrung, die in Abschnitt 3.2.7 spezifiziert wurde, gelten die folgenden Praktiken:

PRAKTIKEN: EINBAU DER VERROHRUNG
- Absetzen der Rohre in den geplanten Teufen entsprechend der identifizierten Gefährdungen
- Kontrolle und Nachweis der stratigraphischen Teufen durch die Entnahme und Untersuchung von Bohrkleinproben in vorher definierten Abständen über die gesamte Bohrstrecke
- Durchführung von Bohrlochmessungen nach Bedarf. Die Bohrlochmessungen haben unterschiedliche Ziele, z. B. Neigungs-und Richtungsmessungen zur Feststellung des Bohrlochverlaufes
- Abhängig von Bohrlochverlauf und Bohrlochkaliber, Zentrieren der Rohrtour im Bereich der zu zementierenden Bohrlochstrecke mit Hilfe von Zentralisatoren
- Konditionieren von Bohrloch und Bohrspülung, um einen problemlosen Rohrtour-Einbau zu gewährleisten
- Herstellung der Rohrverbindungen während des Einbaus mit Hilfe von Verbindern oder Fügetechnik entsprechend den Anforderungen des Bohrprogramms.
Für die Ausführung der Zementation, die in Abschnitt 3.2.8 spezifiziert wurde, gelten:

PRAKTIKEN: AUSFÜHRUNG DER BOHRLOCH-ZEMENTATION

- Bestimmen der Bohrlochgeometrie, um Aussagen zum erforderlichen Zementbrühevolumen und zum Erreichen einer maximalen Spülungsverdrängung machen zu können
- Überprüfen und ggf. Anpassen der geplanten Zementrezeptur und Zementationshöhe in Kenntnis der festgestellten Bohrlochbedingungen
- Kontrolle der hergestellten Zementbrühe nach Vorgabe vor dem Verpumpen, z. B. Rheologie, Dichte, und Entnahme von Rückstellproben der Zementbrühe für weitergehende Untersuchungen
- Prüfung der Zirkulationsmöglichkeit des Bohrloches
- Bei Bedarf Spülungskonditionierung, um eine maximale Verdrängung durch das Trennfluid und die Zementbrühe zu erreichen
- Wenn möglich, Bewegung des Rohrstranges während der Zementation.

3.3.3. Integritätsnachweis der untertägigen Barriere-Elemente bei der Herstellung

Die Produktionsrohrtour bzw. der Produktionsliner wird mit einem Testdruck gemäß Akzeptanzkriterien belastet. Dichtheit wird unterstellt, wenn der Druck über eine angemessene Zeitdauer konstant bleibt bzw. eine Tendenz hin zu einem stabilen Druckendwert erkennbar ist.

PRAKTIKEN: VERIFIZIERUNG DER EINGEBAUTEN VERROHRUNG

- Durchführung eines Testes zum Nachweis der Dichtheit der eingebauten Verrohrung entsprechend den Anforderungen des Bohrprogramms entweder im Rahmen des Zementationsvorganges oder danach
- Bei Drucktest im Rahmen des Zementationsvorganges: Aufgabe eines Druckes deutlich höher als der letzte Zirkulationsdruck vor Stopfenanschlag. Druckaufgaben richten sich nach dem höchsten erwarteten Druck am Rohrschuh beim Bohren, Verrohren und Zementieren des nächsten Bohrabschnitts und betragen mindestens 10 bar bis zu 100 bar bzw. 70% der Rohrinnendruckfestigkeit. Dichtheit wird unterstellt, wenn sich der Druck über 10 Minuten hinweg nicht ändert
Dichtheit wird unterstellt, wenn über eine Zeitdauer von mindestens 10 Minuten hinweg eine Tendenz hin zu einem stabilen Druckendwert erkennbar ist, der mehr als 90% des Ausgangswertes beträgt.

- Bei Linern Nachweisführung der Dichtheit alternativ durch einen Zuflusstest (Entlastungstest)
- Bei Bedarf Messung der Wanddicke in Bohrungsabschnitten starker Krümmung, um sicherzustellen, dass Abnutzungstoleranzen nicht überschritten wurden und die Rohrtour weiterhin den Leitungsnormen entspricht.

- Erhebliche Verluste während des Zementationsvorganges
- Signifikante Abweichung vom Zementationsplan, die das Zementationsziel gefährdet
- vorzeitiger Rücklauf von Zementbrühe zu Tage
- Ein viel geringer Pumpendruck am Ende der Zementationsarbeiten, als der berechnete Wert. Dies kann ein Anzeichen für eine nicht ausreichende Höhe des Zementkopfes sein
- Fluidzufluss vor, während oder nach der Zementation
- Mechanisches Versagen während des Zementationsvorgangs, z. B. Versagen von Liner/Futterrohr, Float Collar und Zementierkopf.

Bei den Bohrlochmessungen, die durchgeführt werden können, handelt es sich um geophysikalische Messungen, z. B.

- Temperaturmessungen zur Bestimmung des Zementkopfes
- akustische Messungen zur Bestimmung der Anbindung des Zementmantels an Rohr und/oder Gebirge.

Bei den Tests handelt es sich um Druck- oder Zuflussteste (Entlastungsteste) nachdem der Zement aufgebohrt und in das Gebirge gebohrt wurde. Der Drucktest dient den Zwecken:

- Bestätigen, dass die Druckintegrität ausreicht, um Migrationswege in die Formationen über den zementierten Rohrschuh oder in den vorangehenden Ringraum auszuschließen
- Prüfung der Druckfestigkeit des Gebirges unterhalb des Rohrschuhs gegenüber zusätzlichem Druck, so dass das Bohrloch beim Bohren des nächsten Bohrlochabschnittes in der Lage ist, einem Zufluss von Formationsliquid ohne Aufbrechen der Gebirge am Rohrschuh standzuhalten
- Erfassung von in situ Spannungsdaten (wenn ein „Extended Leak-off Test“ durchgeführt wurde), die für geomechanische Analysen und Modelle gebraucht werden (z. B. Formationsstabilität)
- Ermöglichen der Bestimmung des MAASP für den nächsten Bohrlochabschnitt.

PRAKTIKEN: VERIFIZIERUNG DER BOHRLOCH-ZEMENTATION

- Bewertung der Zementation entsprechend den Anforderungen des Bohrprogramms, siehe Anhang B, Barriere-Element Futterrohrzementation
- Messungen zur Bestimmung des Zementkopfes, z. B. Temperaturmessung
- Nach Aufbohren des Zementes, Durchführung eines Drucktestes zur Feststellung der Integrität der Rohrschuh-Zementation sowie der Druckfestigkeit des Gebirges unterhalb des Rohrschuhs
- Bei Abweichungen vom Zementationsprogramms sowie für Produktionsrohrtouren: Anwendung zusätzlicher alternativer Verifizierungsverfahren und Nachweis einer ausreichenden Zementation durch z. B. akustische Bohrlochmessungen
- Durchführen von Nachbesserungen der Zementation für den Fall, dass keine ausreichende Zementation nachgewiesen werden kann.

Eine Aufzeichnung der Ergebnisse dieser Prüfungen ist in die Herstellungsunterlagen der Bohrung aufzunehmen.

3.3.4. Abdichtung des Bohrlochs an der Oberfläche bei der Herstellung

Der Bohrlochkopf mit den Bohrloch-Verflanschungen und das Eruptionskreuz mit den AbsperrEinrichtungen bilden den Abschluss des Bohrlochs an der Oberfläche zur Umwelt. Sie müssen technisch dicht hergestellt werden.

PRAKTIKEN: ABDICHTUNG DES BOHRLOCHS AN DER OBERFLÄCHE

- Herstellung der Abdichtungen des Bohrlochkopfes gemäß Bohrprogramm mit seinen spezifischen Vorschriften für Herstellung und Einbau der Komponenten, siehe Abschnitt 3.2.9
- Schutz der Dichtflächen der Dichtungselemente im Bohrlochkopf mittels geeigneter Trenneinsätze (Wear Bushings), um Beschädigung während der zahlreichen Herstellungstätigkeiten zu verhindern
- Montage von Bohrlochkopf und Eruptionskreuz nach Herstellerangaben.

PRAKTIKEN: NACHWEIS DER ABDICHTUNG DES BOHRLOCHS AN DER OBERFLÄCHE

- Beispiele maßgeblicher Nachweise sind:
 o Dichtheitsprüfung des Bohrlochkopfes sowie der Ringraumzugänge mit Armaturen sowie der Futterrohr-Dichtelemente mit den für die jeweilige Sektion bzw. den jeweiligen Betrieb geltenden Nenndrücken
 o Dichtheitsprüfung des Eruptionskreuzes mit allen AbsperrEinrichtungen mit sowohl niedrigen als auch hohen Maximal-Werten für den Differenzdruck in Fließrichtung
 o Test der Verflanschung des Eruptionskreuzes mit dem Bohrlochkopf mit Design-Druck
 o Durchführung von Funktionstesten gemäß API mit Messung des Antriebsstellweges und der Schließzeit der betätigten Eruptionskreuz-AbsperrEinrichtungen bzw. Anzahl der Umdrehungen der nicht-betätigten AbsperrEinrichtungen etc. zum Nachweis von Funktionalität und Verfügbarkeit
 o Prüfung der für das ESD-System der Bohrung maßgeblichen Messwertgeber und deren Zusammenwirken mit allen maßgeblichen Teilen des ESD-Systems, um sicherzustellen, dass alle ESD-Ventile angesteuert werden und wie vorgesehen schließen
 o Analyse der Ringraumdrücke.

3.3.5. Einbauten in das Bohrloch zur Gewährleistung einer sicheren Nutzung bei der Herstellung

Die Komplettierung der Bohrung schafft die Voraussetzungen für die Aufnahme ihres sicheren und bestimmungsgemäßen Betriebes. Sie besteht in der Regel aus dem Einbringen des Steigrohres in das Bohrloch und ggf. seiner Verankerung im Produktionspacker bzw. im „Tubing Anchor“ und Abhängen am Bohrloch-Kopf, der Ausstattung des Steigrohres mit speziellen Komponenten, z. B. dem UTSV falls zutreffend, sowie der Montage des in Abschnitt 3.3.4 behandelten Eruptionskreuzes.
PRAKTIKEN: EINBAU DER (UNTERTAGE) KOMPLETTIERUNG
- Herstellung der Komplettierung gemäß Programm mit seinen spezifischen Vorschriften für Herstellung und Einbau der Komponenten, siehe Abschnitt 3.2.10
- Bei verschraubten Rohren: Herstellung der Steigrohr-Verbindungen unter Beachtung der Herstellervorgaben, z. B. für Gas: computergestützte Verschraubung und Dokumentation zum Nachweis einer gasdichten Verbindung
- ggf. Durchführung korrekter Maßnahmen zur Behebung festgestellter Defekte
- Setzbereich des Produktionspackers prüfen und Packer setzen.

PRAKTIKEN: NACHWEIS DER INTEGRITÄT DER (UNTERTAGE) KOMPLETTIERUNG
- Nachweis der Dichtheit der Installation durch entsprechende Druckprüfungen (Ringraumdruckprobe nach Setzen des Packers, Steigrohrrdruckprobe)
- Belastungsteste des Produktionspackers nach Setzen auf Kompression/Zug sofern technisch machbar (nicht möglich z. B. bei am Steigrohrstrang eingebauten und hydraulisch gesetzten Packern, da das Eruptionskreuz bereits installiert ist)
- Nachweis der Funktionsfähigkeit und Dichtheit des UTSV in Anlehnung an API Spec14A/ISO 10432.

3.3.6. Dokumentation der Herstellung
Aus dem Phasenziel, die Bohrung mit ihren Barrieren und Barriere-Elemente herzustellen und die Elemente in Ihrer Wirksamkeit nachzuweisen, leiten sich besondere Anforderungen zur Dokumentation des Herstellungsverganges und der Bohrungssituation im Einbauzustand sowie der durchgeführten Wirksamkeitsnachweise der Barriere-Elemente ab.

PRAKTIKEN: DOKUMENTATION DES EINBAUZUSTANDES UND INTEGRITÄTSNACHWEISE
- Dokumentation des „as-built“ Zustandes der Bohrung mit unterstützenden Herstellungsunterlagen der eingebauten Bohrungbarriere-Elemente und ihrer Validierung, siehe auch die Praktiken zur Übergabe der Bohrung an den Betrieb.

Weitere Anforderungen zur Dokumentation ergeben sich aus der formellen Übertragung der Verantwortung für die Bohrung nach ihrer Herstellung und Verifizierung vom Bohrbetrieb an den Produktions- oder Speicherbetrieb. Für diese sind alle einschlägigen Informationen zu dokumentieren, die für eine solche Übertragung erforderlich sind.

PRAKTIKEN: MÖGLICHE INHALTE DES ÜBERGABEDOCUMENTS AM ENDE DER HERSTELLUNGSPHASE
Die folgenden Bohrungsinformationen sollten in der ursprünglichen Dokumentation für die Bohrungsübergabe von der Herstellungsphase zur Betriebsphase enthalten sein:
- Detailliertes Bohrungsschema mit Darstellung aller Futterrohrstränge (Angaben zu Dimension, Werkstoffen, Gewindetypen sowie den Dichten der im Förderstrang und in den Ringräumen verbliebenen Fluide, platzierten Zemente sowie ggf. Lagerstätten- und Perforationseinzelheiten
- Aufbauzeichnung von Eruptionskreuz und Bohrlochkopf, mindestens mit Beschreibung der Absperrreinrichtungen sowie Beschreibung ihrer Betriebs- und Prüfkriterien (Leistungsnormen), Prüfergebnisse und Status (offen oder geschlossen)

- Detaillierte Darstellung der Komplettierung im Einbauzustand (Auflistung aller Komponenten mit OD und ID, Längen, Werkstoffen, Gewinden und Einbau-Teufen)

- Status, Leistungsnorm und Prüfaufzeichnungen des UTSV

- Status des ESD-Systems und der Antriebssysteme

- Drücke, Volumen und Arten der in den Ringräumen der Bohrung sowie im Steigrohr und im Eruptionskreuz verbliebenen Fluide

- Bohrungsverlauf, einschließlich der Koordinaten für den Bohransatzpunkt

- Einzelheiten jeglicher im Bohrloch belassener Bohrungsbarriere-Elemente (Stopfen, Rückschlagventile oder ähnliche Elemente) oder Einrichtungen, die gewöhnlich entfernt werden müssen, um Förderung und/oder Monitoring zu ermöglichen

- Porendruckdiagramm und geologische Angaben

- Bohrungs-Betriebsgrenzen.

Zum großen Teil decken sich diese Informationen mit den Unterlagen und Nachweisen des Förderbuches, dessen Führung in der BVOT vorgegeben ist, für Niedersachsen siehe z. B. [26].

3.3.7. Zusätzliche Anforderungen an die Herstellung von Erdgasbohrungen

Den besonderen Bedingungen für Erdgas Förderbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: HERSTELLUNG VON ERDGASBOHRUNGEN

Produktionsmedium Gas

- Herstellen der Verbindungen der Futterrohre der Produktionsrohrtour durch gasdichte Verbinder

- Kontrolle und Protokollierung der Verschraubung der eingesetzten gasdichten Verbinder mit Metall auf Metall Dichtung (sog. Premium-Verbinder) über eine computerunterstützte Drehmomentaufzeichnung mit Verschraub-Diagramm zur elektronischen und visuellen Auswertung

- Bei Einbau eines UTSV, Nachweis der Funktionsfähigkeit und Dichtheit des UTSV in Anlehnung an API Spec14A/ISO 10432

- Prüfung von Bohrlochverschlüssen und Sicherheitseinrichtungen mindestens nach den gesetzlichen und behördlichen Vorgaben [26].

3.3.8. Zusätzliche Anforderungen an die Herstellung von Erdölbohrungen

Den besonderen Bedingungen für Erdölbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: HERSTELLUNG VON ERDÖLBOHRUNGEN

Produktionsmedium Öl

- Herstellen der Verbindung der Futterrohre der Produktionsrohrtour durch hydraulisch dichte Verbinde als Minimalanforderung

Mechanische Beanspruchungen in der Betriebsphase

3.3.9. Zusätzliche Anforderungen an Herstellung von Einpress- und Versenkbohrungen

Den besonderen Bedingungen für Einpress- und Versenkbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird durch die folgenden Praktiken Rechnung getragen, die über die in 3.3.7 für Erdgasbohrungen dokumentierten Praktiken hinausgehen:

PRAKTIKEN: HERSTELLUNG VON EINPRESS- UND VERSENKBOHRUNGEN

- Ggf. Einbau und Funktionstest von Untertage-Druckmessgeräten zur Untertage Injektionsdrucküberwachung
- Ggf. Ausrüstung der Bohrung zur Steuerung des Injektionsdruckes/der Injektionsrate und Funktionstest der vorgenommenen Ausrüstung.

3.3.10. Zusätzliche Anforderungen an Herstellung von Porenspeicher-Bohrungen

Den besonderen Bedingungen für Porenspeicher-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird durch die folgenden Praktiken Rechnung getragen, die über die in 3.3.7 für Erdgasbohrungen dokumentierten Praktiken hinausgehen:

PRAKTIKEN: HERSTELLUNG VON PORENSPEICHER-BOHRUNGEN

- Produktionspacker Herstellung nach ISO Norm 14310 [17] mit V-0 Test im Werk

3.3.11. Zusätzliche Anforderungen an Herstellung von Flüssigkeitskavernen-Bohrungen

Den besonderen Bedingungen für Flüssigkeitskavernen-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: HERSTELLUNG VON FLÜSSIGKEITSKAVERNEN-BOHRUNGEN

- Herstellen der Verbindung der Futterrohre der Produktionsrohrtour durch hydraulisch dichte oder gasdichte Verbinder (abhängig vom Blanket) oder Verschweißen
- Vor Beginn des Solprozesses: Nachweis der hydraulischen bzw. der (technischen) Gasdichtheit der letzten zementierten Rohrtour und der Rohrschuhvazometierung unter Ansatz der Anforderungen des im Solprozess eingesetzten Blankets (flüssig oder gasförmig). Festlegung des Testdruckes entsprechend des während der Solung maximal auftretenden Druckes.

3.3.12. Zusätzliche Anforderungen an Herstellung von Gaskavernen-Bohrungen

Den besonderen Bedingungen für Gaskavernen-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird durch die folgenden Praktiken Rechnung getragen, die über die in 3.3.11 für Flüssigkeitskavernen-Bohrungen dokumentierten Praktiken hinausgehen:
PRAKTIKEN: HERSTELLUNG VON GASKAVERNEN-BOHRUNGEN

- Herstellung der Verbindung der Futterrohre der Produktionsrohtour durch gasdichte Verbinde
oder Verschweißen
- Vor Gas-Erstbefüllung: Nachweis der (technischen) Gasdichtheit der letzten zementierten Rohrtour
und der Rohrschuhzementation mit Stickstoff und maximalem Betriebsdruck [27], [28]
- Verbleibt die rechnerische Leckagerate über dem Dichtheitskriterium: Planung und Durchführung
geeigneter Reparaturmaßnahmen.

3.4. Betrieb

Ziel: Sicherer Betrieb der Bohrung innerhalb der Leistungsgrenzen ihrer Barriere-Elemente sowie Aufrecht-
erhaltung und Nachweis der Wirksamkeit der Barriere-Elemente.

Bohrungen werden ausgelegt für erwartete produzierte oder injizierte Fluide und Betriebsbedingungen mit
denen ihre Barriere-Elemente in Kontakt kommen bzw. denen sie ausgesetzt sein können. Für die aus Fluid
Kontakt und Betriebsbedingungen resultierenden Anforderungen werden für diese Elemente Leistungsnor-
men definiert und die Elemente darauf ausgelegt, siehe Abschnitt 2.2. Betriebsgrenzen mit Höchst- und
Mindestwerten für zulässige Bedingungen (inkl. maximal zulässiger Ringraumdrücke) stellen sicher, dass
Auslegungsgrenzen nicht überschritten werden, siehe Abschnitt 3.2.4.

Die Zielstellung eines sicheren Bohrungsbetriebes erfordert es, die zulässigen Bedingungen einzuhalten und
die Wirksamkeit der Barriere-Elemente aufrechtzuerhalten bzw. die zulässigen Bedingungen anzupassen.

Dies wird erreicht durch:

- Monitoring der gültigen Betriebsbedingungen
- Aufrechterhaltung der Barriere-Elemente, s. a. Tabelle 2
- Verifizierung der anhaltenden Wirksamkeit der Barriere-Elemente durch wiederkehrende Prüfun-
gen, wo technisch erforderlich

3.4.1. Bohrungsmonitoring im Betrieb

Durch Monitoring wird die Einhaltung der definierten Betriebsgrenzen überwacht.

PRAKTIKEN: MONITORING ALLGEMEIN

- Übernahme der Bohrung nach Herstellung durch den Betrieb mit einer Dokumentation in einem
Übergabe-Dokument, siehe 3.3.6, von z. B. der geltenden Leistungsnormen
- Überprüfung der festgelegten Betriebsgrenzen mit Höchst- und Mindestwerte für zulässige Be-
triebsbedingungen, inklusive maximal zulässiger Ringraumdrücke
- Festlegung des Verfahrens für die Inbetriebnahme der Bohrung mit Förder-/Injektionsraten sowie
zugehörigen Drücken und Temperaturen
- Festlegung der Monitoring- und Überwachungsanforderungen, um sicherzustellen, dass die Boh-
rungen innerhalb ihrer Betriebsgrenzen betrieben wird
- Festlegung der Verfahrensweisen für Bohrungs-Monitoring und Überwachung und ihre Häufigkei-
ten, von Verantwortlichkeiten sowie Status-Dokumentation der Bohrungsintegrität einschließlich
ihrer Betriebsgrenzen-Parameter in einem entsprechenden Programm. Dabei Beachtung der Anfor-
derungen der jeweils anzuwendenden BVOT.
PRAKTIKEN: MONITORING BETRIEGSGRENZEN
- Monitoring der Parameter, für die Betriebsgrenzen und Schwellenwerte festgelegt wurden
- Durchführung festgelegter Maßnahmen, wenn sich ein Bohrungsparameter seinem festgelegten Schwellenwert annähert
- Durchführung erforderlicher Maßnahmen, Benachrichtigungen und Untersuchungen bei Überschreitung von Schwellenwerten
- Untersuchung von jedem ungeplanten Betrieb außerhalb der Betriebsgrenzen und Bewertung seiner Auswirkungen auf die Leistungsfähigkeit der Barriere-Elemente
- Bewertung von geplanten Abweichungen von den zugelassenen Betriebsgrenzen
- Beispiele für Betriebsgrenzen:
 o Bohrlochkopf-/Steigrohrkopf-Förder- und Injektionsdruck
 o Förder-/Injektionsraten bzw. abgeleitete Fließgeschwindigkeiten
 o Ringraumdrücke (MAASP), siehe 3.4.5 ff.
 o Korrosive Bestandteile in Förder-/Injektionsfluiden (z. B. H₂S, CO₂ usw.)
 o Betriebstemperatur
 o Bewegung des Bohrlochkopfes, z. B. Bohrlochlockwachstum aufgrund von Wärmeausdehnung und Bohrlochlockpenkung
 o Wechselbeanspruchungen mit Einfluss auf die Lebensdauer, z. B. für Futterrohrtouren, insbesondere solche in Thermal-Bohrungen
 o Futterrohr Wanddicken.

Sichtprüfungen werden durchgeführt, um den allgemeinen Zustand der Oberflächenrausprütung sowie den zugehörigen Schutz um die Bohrung herum zu bewerten.

PRAKTIKEN: SICHTPRÜFUNGEN UND LOKATIONSBEFAHRUNGEN
- Durchführung von Sichtprüfungen im Rahmen von Lokationsbefahrungen in Abständen mindestens gemäß gesetzlichen und behördlichen Vorgaben z. B.:
 o Beschädigung von Bohrungsausrüstung und Barrieren wie Standrohr, Betonbarriere und Zäune
 o Zustand des Bohrlochellers
 o Allgemeiner Zustand von Bohrlochkopf und Eruptionskreuz, mechanische Beschädigung, Korrosion etc.
 o Kontrolle auf Leckagen oder Blasenbildung ggf. mit einer groben Schätzung der Leckagerate und Berichterstattung gemäß Betreiber-Vorgaben und gesetzlichen Anforderungen.

Korrosion von tragenden oder drucktragenden Komponenten der Bohrung kann zu einem Verlust der Bohrungsintegrität führen. Das gleiche gilt für Erosion von Komponenten im Strömungsweg innerhalb der Bohrung, des Bohrlochkopfes und des Eruptionskreuzes. Zu ihrer Beobachtung sind die folgenden Praktiken üblich:

PRAKTIKEN: KORROSION UND EROSION
- Monitoring innerer und äußerer Korrosion an tragenden oder drucktragenden Komponenten der Bohrung auf der Grundlage der Analyse des Korrosionsrisikos:
 o Schätzung der Korrosionsraten für Barriere-Elemente, z. B. auf der Basis von Korrosionsabtragsraten
 o Regelmäßige Untersuchung von Schutzbeschichtungen (z. B. sofern zugänglich an Ankerrohtouren, Bohrlochköpfen, Eruptionskreuzen usw.) und von tragenden Bauteilen, wie z. B. Ankerrohtour
o Direkte Messungen zur Feststellung von Korrosion, z. B. elektromagnetische und Ultraschall-Messungen
o Indirekte Messungen, wie z. B. Untersuchung von Ringraumfluid oder produzierten Flüssigkeiten auf korrosive Fluidanteile bei Indikation von Barriere-Fehler und Nebenprodukte korrosiver Reaktionen
o Monitoring der Chemikalieninjektion in den Fluid-Strömungsweg
o Monitoring der chemischen Inhibition von Ringraumfluiden
o KKS Messungen.

3.4.2. Bohrungswartung im Betrieb

Die Bohrungsbarriere-Elemente werden während der Bohrungsbetriebsphase regelmäßig gewartet, um ihre Wirksamkeit aufrecht zu erhalten. Wartungsmaßnahmen sind alle Aktivitäten mit denen die Verfügbarkeit, die Zuverlässigkeit und der Zustand von Bohrungsbarrieren, Barriere-Elementen und Steuersystem inspiriert, geprüft, betätigt, instandgehalten und/oder repariert werden. Inspektion, Prüfung, Instandhaltungsmaßnahmen und Wirksamkeitsnachweis erfolgen auf der Basis von Kriterien für die Akzeptanz der Bohrungsbarriere-Elemente als wirksame Barriere-Elemente, siehe auch Anhang B.

PRAKTIKEN: WARTUNG

- Festlegung eines Wartungsprogramms für die Bohrungsbarriere-Elemente, die gewartet werden müssen, inklusive der Festlegung des Ausführenden (externer Fachkundiger/Service Unternehmen, verantwortliche bzw. fachkundige Person) und der Häufigkeit mit der Wartungsmaßnahmen durchgeführt werden, mindestens gemäß anzuwendender BVOT
- Regelmäßige Überprüfungen des Bohrlochkellers
- Regelmäßige Überprüfungen und Prüfungen von Bohrlochkopf und Eruptionskreuz, einschließlich aller Absperrereinrichtungen, Aufsätze, Flanschverbindungen und Klemmvorrichtungen, Schmiernippen, Prüfanschlüsse, Steuerleitungsausgänge durch den Verantwortlichen ggf. unter Einschaltung einer Servicefirma unter Berücksichtigung der Empfehlungen in API Spec 6A in Abständen mindestens gemäß anzuwendender BVOT
- Regelmäßige Prüfung und Kalibrierung der Monitoringsysteme (einschließlich Messgeräten, Messwertaufnehmern, Sendern und Empfängern, usw.)
- Prüfung von Ringraumdücken und Fluidständen sowie Trendanalyse der Ringraumdrücke
- Prüfung der ESD-Systeme (z. B. Sender, ESD-Paneele, Schmelzsicherungen)
- Sofern vorhanden, Prüfung der Chemikalieninjektionssysteme
- Verfolgung des Verhältnisses aus korrektiven und vorbeugenden Wartungsaktivitäten und ggf. Anpassung von Monitoring- und Wartungsprogramm
- Ggf. Bestimmung der Fließgeschwindigkeiten in den fluidbenetzten Rohrtouren, um sicherzustellen, dass Maximalgeschwindigkeiten nicht überschritten werden

3.4.3. Änderung bestehender Spezifikationen im Betrieb

Aus unterschiedlichen Gründen können Umstände eintreten, in denen ein Barriere-Element nicht entsprechend der ursprünglichen Auslegungsspezifikation aufrechterhalten werden kann, bzw. die zu einer Umnutzung der Bohrung führen.

PRAKTIKEN: ÄNDERUNG DER SPEZIFIKATIONEN
- Durchführen von Risikoanalysen, um für Fälle, in denen ein Barriere-Element nicht entsprechend der ursprünglichen Leistungsnormen aufrechterhalten werden kann, Möglichkeiten zu identifizieren, um durch zusätzliche Maßnahmen das Risiko auf ein zulässiges Maß zu mindern, siehe 2.7
- Bei Änderung der Bohrungsnutzung: Neubewertung der Barriere(n) und der Bohrungs-Betriebsgrenzen im Rahmen eines Änderungsmanagement-Prozesses, siehe 2.6.

3.4.4. Dichtheitskriterien und Dichtheitsnachweise im Betrieb

Ein Großteil der Leistungskriterien für die Barriere-Elemente sind Akzeptanzkriterien für die Fähigkeit zum Einschluss von Bohrungsfliuden.

Nach der DIN wird ein Barriere-Element als technisch dicht bezeichnet, wenn es frei ist von Lecks entsprechend einer vorgegebenen Anforderung, siehe z. B. auch [15] [29] [30] [31] [32]. Die Anforderungen in Form von zulässigen Leckageraten gewährleisten die Einhaltung der Schutzziele. Sie berücksichtigen:
- Gesetzliche Regeln
- Stoffeigenschaften
- Betriebsbedingungen
- Bohrungstyp, -designmerkmale und Status
- Industrienormen wie API 14b [16], EN ISO 14310 [17], ISO/DIS 16530-1 [1] etc. und
- Prüfmedium.

PRAKTIKEN: DICHTHEITSKRITERIEN UND -NACHWEISE
- Dichtheitsnachweise durch Zufluss- oder Drucktest
- Testdurchführung nach Möglichkeit in Fließrichtung (Zufluss- oder Drucktest). Sofern nicht praktikabel, Durchführung eines Drucktests
- Festlegung zulässiger Leckageraten oder Druckänderungen sowie der Prüfhäufigkeit für einzelne Bohrungssbarriere-Elemente innerhalb der Akzeptanzkriterien, unter Berücksichtigung von Risiko (ggf. auch für die gesamte Anlage), gesetzlichen Vorgaben und technischen Empfehlungen
- Zulässige Leckageraten sollten die folgenden Akzeptanzkriterien erfüllen, sofern zutreffend:
 - Leckage einer Absperrarmatur: Leckage bleibt eingeschlossen innerhalb einer Bohrungsbarriere oder eines Strömungswege, siehe ISO 10417
Leckage einer Bohrungskante von Fließkanal zu Fließkanal: unzulässig, wenn der aufnehmende Fließkanal die potenziell neu einwirkende Last und Fluidzusammensetzung nicht aufnehmen kann

Keine Leckagerate von Fließkanal zu Fließkanal über die in ISO 10417 festgelegte zulässige Leckagerate von 24 l/h (6,34 Gallonen US/h) für Flüssigkeit oder 25,4 m³/h (900 scf/h) für Gas hinaus

Keine ungeplante oder unkontrollierte Leckage mit Fluidaustritt in die Übertage- oder Untertageumgebung.

ANMERKUNG: Für die Anwendung dieser Vorgabe ist API RP 14B äquivalent zu ISO 10417.

- Durchführung von Prüfungen entsprechend vorgenommener Festlegungen
- Bei Leckageraten außerhalb der festgelegten Akzeptanzkriterien, Vorgehen wie bei Ausfall eines Bohrungskante-Elementes, siehe 3.4.8.

3.4.5. Höchstzulässiger Ringraumkopfdruck (MAASP) und Betriebsgrenzen im Betrieb

Der höchstmögliche Ringraumkopfdruck (maximum allowable annulus surface pressure, MAASP) ist der höchste Druck am Bohrlochkopf, der für einen Ringraum zulässig ist, ohne die Integrität eines Barriere-Elementes dieses Ringraums zu gefährden.

PRAKTIKEN: HÖCHSTZULÄSSIGER RINGRAUMDRUCK (MAASP)

- Bestimmung des MAASP für jeden Ringraum der Bohrung unter Berücksichtigung relevanter Faktoren, z. B.
 - Höchster Druck, mit dem der betroffene Ringraum geprüft wurde
 - Mechanische Leistungsspezifikationen für jede Komponente des betroffenen Ringraums im Einbau- oder Herstellungszustand
 - Einzelheiten über alle Fluide (Dichte, Volumen, Stabilität) im Ringraum und in angrenzenden Ringräumen oder im Steigrohr
 - Einzelheiten zur Futterrohr-Zementation inkl. Druckfestigkeit des Zementes
 - Einzelheiten zur Festigkeit freiliegender Formationen, Durchlässigkeit und Formationsfluide
 - Einzelheiten zu durchteuften Grundwasserleitern, z. B. Porendruckprofil
 - Anpassungen für Abnutzung, Erosion und Korrosion, die bei der Bestimmung des MAASP berücksichtigt werden sollen
 - Bei Einbau von Druckentlastungseinrichtungen (z. B. Berstscheiben) in ein Futterrohr: sicherstellen, dass die Berechnungen des MAASP alle Lastfälle bei offenen und geschlossenen Entlastungseinrichtungen einschließen

- Neuberechnung des MAASP für jeden Ringraum der Bohrung, s. a. 2.5, bei
 - Änderungen der Leistungsnormen der Bohrungskante-Elemente
 - Änderungen der Betriebsart der Bohrung
 - Änderungen der Dichte von Ringraumfluiden
 - Auftreten von Wanddickenverringerung an Steigrohr/Futterrohr
 - Änderungen der Lagerstättendrucke auf Werte außerhalb der ursprünglichen Lastfallberechnung

- Dokumentation der MAASP-Werte in den entsprechenden Bohrungsaufzeichnungen.

Für einen sicheren Betrieb werden auf Basis der berechneten, maximal zulässigen Drücke der Ringräume sichere Betriebsbereiche für den Druck eines jeden Ringraumes bestimmt.
PRAKTIKEN: RINGRAUM-BETRIEBSGRENZEN

- Festlegung zulässiger Betriebsbereiche für jeden Ringraum zwischen oberem und unterem Schwellenwert
- Festlegung des oberen Schwellenwertes unterhalb des MAASP-Wertes, um ausreichend Zeit für das Einleiten von Korrekturmaßnahmen zu lassen bevor der MAASP erreicht wird. Er sollte jedoch höher sein als der Druck, der im Rahmen normaler Betriebsvorgänge erreicht wird
- Festlegung eines unteren Schwellenwerts unter Berücksichtigung von Erfordernissen wie
 o Möglichkeit der Beobachtung des Ringraumdruckes
 o Hydraulische Abstützung von Bohrungsbarriere-Elementen
 o Vermeidung von Futterrohrkollaps, z. B. für den nachfolgenden Ringraum oder für Hohlräume, wenn eine Entlastung nicht möglich ist
 o Berücksichtigung der Reaktionszeit
 o Fähigkeit zur Erkennung potenzieller kleiner Leckagen
 o Temperaturschwankungen
 o Vermeidung von Gasentlösung (Korrosionsbeschleunigung)
 o Verhinderung des Eindringens von Luft.

Die durch oberen und unteren Schwellenwert definierten Betriebsbereiche gelten nur für zugängliche Ringräume, die ein Druckmanagement durch z. B. Ablassen oder Zuführen ermöglichen.

3.4.6. Ringraumdruck-Monitoring und Management im Betrieb

Ein Druckaufbau mit anhaltendem Druck in einem Ringraum ist häufig Hinweis auf ein Integritätsproblem. Ein Ringraumdruck wird als anhaltender Ringraumdruck oder Sustained Casing Pressure (SCP) bezeichnet, wenn er nach Druckentlastung und erneutem Verschließen des Ringraumes wieder auf seinen alten Wert ansteigt.

Als Ursache von anhaltendem Ringraumdruck kommt der Ausfall eines oder mehrerer Bohrungsbarriere-Elemente in Frage, wenn dadurch eine Kommunikation zwischen einer Druckquelle und einem Ringraum geschaffen wird. Kommunikation mit einer Druckquelle kann durch verschiedene Ausfallarten verursacht werden, z. B.:
- Zustandsverschlechterung von Futterrohr, Liner, Steigrohr aufgrund von Korrosion/ Erosion/ Ermüdung/ Spannungssüberlastung
- Ausfall der Hänger-Dichtung
- Verlust der Zementintegrität
- Verlust der Formationsintegrität, z. B. aufgrund von Konvergenz
- Integritätsverlust des Packers und/oder einer Dichtung
- Leckage an Steuer- oder Chemikalieninjektionsleitungen
- Fehlerhafte Armaturenstellungen.

ANMERKUNG: API RP 90 enthält Verfahren, welche die Bestimmung der Art des beobachteten Ringraumdrucks unterstützen können.

PRAKTIKEN: RINGRAUMDRUCK-MONITORING
- Kalibrierung und Funktionsüberprüfung der Monitoring-Ausrüstung
- Für zugängliche, geschlossene Ringräume: Aufbringen und Halten eines geringen Überdruckes durch Aufpumpen mit Flüssigkeit, ggf. auch Aufbringen eines kleinen Gaspolsters (z. B. Tracer Gas), um Leckagen an den zu überwachenden Bohrungsbarriere-Elementen (Produktionspacker, Steigröhre oder Futterrohrstrang, Futterrohrzement usw.) erkennen zu können
- Festlegung von Monitoring- und Überwachungshäufigkeit für Steigröhre- und Ringraumdrücke unter Berücksichtigung relevanter Faktoren, z. B.
 o Erwarteten Temperaturänderungen und -auswirkungen, insbesondere während des An- und Abfahrvorganges
 o Risiko des Überschreitens von MAASP oder Auslegungsgrenzlasten
 o Risiko von anhaltendem Ringraumdruck
 o Zeit bis sich der erhöhte Ringraumdruck nach Entlastung wieder einstellt
 o Benötigtes Datenvolumen für Trendanalysen und Erkennung von Druckanomalien
- Ringraum-Monitoring entsprechend vorgenommener Festlegungen mit Feststellungen von z.B.
 o Steigröhre- und Ringraumdrücke
 o Flüssigkeitsspiegel im Ringraum
 o Fluidarten im Ringraum und ihre Eigenschaften (einschließlich Fluiddichte)
 o Fluidarten und -volumen, die dem Ringraum zugeführt bzw. aus diesem abgelassen werden

Ziel des Ringraumdruck-Managements ist es, den Ringraumdruck innerhalb seiner zulässigen Betriebsgrenzen zu halten. Das Prinzip der Betriebsgrenzen ist in Abbildung 5 dargestellt.

Abbildung 5: Darstellung von Schwellenwerten und MAASP
PRAKTIKEN: RINGRAUMDRUCK-MANAGEMENT

- bei der Durchführung von Druckentlastungen, Berücksichtigung des Risikos einer Verunreinigung des Ringraum-Inhaltes durch den stattgefundenen Fluidzufluss

ANMERKUNG: Ein Beispiel für eine Methodik für die Durchführung derartiger Prüfungen ist API RP 90 zu entnehmen.

- Dokumentation von Art und Gesamtvolumen des abgelassenen (sofern technisch möglich) oder zugeführten Fluide und Dokumentation aller Ringraum- und Steigrohrdrücke sowie der Zeit bis zum Abschluss des Ablass- bzw. Zuführungs-Vorganges
- Dokumentation der Häufigkeit der Entlastungen und des geschätzten Gesamtvolumen der dabei abgeleiteten Flüide
- Risikoanalyse und -minderung bei Über- oder Unterschreiten von oberem bzw. unterem Schwellenwert der Betriebsgrenzen. Maßnahmen sollten einem Änderungsprozess unterzogen werden, Abschnitt 2.6, siehe auch 3.4.7.

3.4.7. Ringraum Untersuchung und Änderung von MAASP/Schwellenwerten im Betrieb

PRAKTIKEN: RINGRAUM UNTERSUCHUNG

- Festlegung eines Verfahrens für die Durchführung von Ringraum Untersuchungen mit Druckentlastung und Druckaufbau
- Aufzeichnen von Kopfdrücken sowie Volumen und Dichten der Flüssigkeiten und Gase, die aus dem Ringraum abgelassen oder ihm zugeführt wurden, sofern dies technisch möglich ist
- ggf. Manipulation eines benachbarten Ringraumdrucks zur Gewinnung zusätzlicher Informationen
- Wenn möglich, Entnahme von Fluid aus dem betroffenen Ringraum und Analyse
- Überprüfung von Aufzeichnungen und Vorgeschichte der Bohrung, um die potenzielle(n) Ursache(n) des Drucks zu bestimmen.

Für die Überprüfung und Änderungen von MAASP und Betriebsgrenzen bei länger anhaltendem Ringraumdruck sind die nachfolgenden Praktiken üblich:

PRAKTIKEN: RINGRAUM ÜBERPRÜFUNG

- Nutzung der vorgenannten Information zur Feststellung von
 o Quelle des anhaltenden Ringraumdrucks basierend auf der Analyse aktueller Fluid-Proben und ihrem Vergleich mit den Informationen im ursprünglichen Sampler Protokoll aus der Bohrphase
o Fluidzusammensetzung und Porendruck des potenziellen Zuflusshorizontes
o Potenzielle Migrationswege von der Quelle zum Ringraum (oder umgekehrt)
- Leckagerate und/oder Anstiegsrate des Ringraumdrucks sowie potenzielle Volumen- und Dichteänderungen im Ringraum
- Feststellen des Bohrungszustandes

- Bewertung der Ergebnisse vor dem Hintergrund von
 o Häufigkeit von Ringraumdruckentlastungen
 o anormale Drucktrends (Hinweis auf Leckagen in einen/aus einem Ringraum)
 o Inhalt des Ringraumes und seines Flüssigkeitsstandes
 o Volumen das aus dem Ringraum abgelassen oder ihm zugeführt wurde
 o Art des verwendeten oder entnommenen Fluids (Öl/Gas/Spülung)
 o Drucküberschreitungen über den MAASP und/oder den oberen Schwellenwert hinaus.

- Bei SCP, Neuberechnung des MAASP unter Berücksichtigung der Auswirkungen des anhand der Fluidsäule geschätzten mittleren Fluidgradienten.

Die Neuberechnung des MAASP darf in Betracht gezogen werden, wenn Gas die ursprüngliche Ursache des Ringraumdrucks ist und der Bohrungsbetreiber die Quelle, Wege und Raten ermittelt sowie das Risiko eines (Untertage-)Einschlussverlustes anhand der Rohrschuhfestigkeit und des Porendrucks der ursprünglichen Quelle analysiert und bewertet hat.

3.4.8. Risikoanalyse und Management des Ausfalls von Bohrungbarriere-Elementen im Betrieb

Um auf den Ausfall der Integrität eines Bohrungbarriere-Elementes schnell und angemessen reagieren zu können sind folgende Praktiken üblich:

PRAKTIKEN: INTEGRITÄTSAUSFALL EINES BOHRUNGSBARRIERE-ELEMENTES
- Durchführung einer Risikoanalyse zum Ausfall der Integrität der in einer Bohrung vorhandenen Barriere-Elemente unter Berücksichtigung der bestehenden Redundanzen
- Festlegung von Reaktionszeiten und Reparaturprioritäten gemäß Analyseergebnis.

3.4.9. Berichte und Dokumentation im Betrieb

In der Betriebsphase besteht die zusätzliche Dokumentation und Berichterstattung insbesondere aus Aufzeichnungen zu Vorkommnissen und Maßnahmen im Zusammenhang mit der Integrität der Bohrung.

PRAKTIKEN: MÖGLICHE INHALTE DER BERICHTEN UND DOKUMENTATIONEN IN DER BETRIEBSPHASE
- Dokumentation und Berichterstattung von integritätsrelevanten Vorkommnissen und Maßnahmen im Einklang mit den gesetzlichen und behördlichen Vorgaben
- Vorhalten der Information gemäß den vom Bohrungsbetreiber festzulegenden Verfügbarkeitsdauern, im Minimum entsprechend den Vorgaben zum Förderbuch:
 o Bohrlochbild und Bohrungbarriere-Schema
 o Leistungsnormen
3.4.10. Zusätzliche Anforderungen an den Betrieb von Einpress- und Versenkböhrungen

Den besonderen Bedingungen für Einpress- und Versenkböhrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: BETRIEB VON EINPRESS- UND VERSENKBOHRUNGEN

- Ggf. Überwachung des Untertage Injektionsdruckes
- Steuerung des Injektionsdruckes zur Einhaltung der Betriebsgrenzen
- Ggf. Steuerung der Injektionsmenge zur Einhaltung anwendbaren Auflagen für den statischen Porendruck.

3.4.11. Zusätzliche Anforderungen an den Betrieb von Poren-Speicher-Bohrungen

Den besonderen Bedingungen für Poren-Speicherbohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: BETRIEB VON PORENSPEICHER-BOHRUNGEN

- Regelmäßige Dichtheits- und Funktionsprüfung der im oberen Landenippel eingebauten Absperrreinrichtung durch Entlastung der Leitung; Ausbau und Kontrolle der Absperrreinrichtung bei Nichteinhaltung der max. Leckagerate. Testdurchführung nach API 14B, [16]
- Bei Rekomplettierungserfordernis (Ausbau Förderrohrtour) ggf. Inspektionsmessung/ Überprüfung der letzten zementierten Rohrtour und deren Zementation.

3.4.12. Zusätzliche Anforderungen an den Betrieb von Flüssigkeitskavernen-Bohrungen

Den besonderen Bedingungen für Flüssigkeitskavernen-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird wie folgt Rechnung getragen:

PRAKTIKEN: BETRIEB VON FLÜSSIGKEITSKAVERNEN-BOHRUNGEN

- Zur Feststellung der Einwirkung von Kavernen, Anlegen/regelmäßiges Vermessen von Festnetzpunkten an der Tagesoberfläche
- Bei erkennbaren Einwirkungen auf die Tagesoberfläche, Ergebnis-Darstellung als Höhenfestpunktriss.

3.4.13. Zusätzliche Anforderungen an den Betrieb von Gaskavernen-Bohrungen

Den besonderen Bedingungen für Gaskavernen-Bohrungen, wie sie in Tabelle 1 wiedergegeben sind, wird durch die folgenden Praktiken Rechnung getragen, die über die in 3.4.12 für Flüssigkeitskavernen-Bohrungen dokumentierten Praktiken hinausgehen.

PRAKTIKEN: BETRIEB VON GASKAVERNEN-BOHRUNGEN

- Regelmäßige Dichtheits- und Funktionsprüfung ziehbarer wireline retrievable UTSe, Testdurchführung nach API 14 B. Ausbau und Kontrolle der UTSe bei Nichteinhaltung der max. Leckagerate
- Bewertung möglicher Auswirkungen von Änderungen der Kaverne (Konvergenz, Firsthochbruch etc.) auf die Verrohrung und die Komplettierung

3.5. Verfüllung

3 wireline retrievable
Im oberflächennahen Bereich ist die Bohrung bis zu einer Tiefe zu zementieren, bei der die für eine Nutzung vorgesehenen Süßwasserhorizonte überdeckt werden, mindestens jedoch 100 m [33]. Um das Bohrloch zu sichern und eine spätere Nutzung der Tagesoberfläche nicht zu behindern, sind die Rohrtouren bis mindestens 2 m unter Ackersohle zu entfernen. Oberhalb der stehengebliebenen Verrohrung ist das Bohrloch durch eine Betonplatte zu sichern.

3.5.1. Verfüllungsplanung

PRAKTIKEN: VERFÜLLUNGSPLANUNG

- Identifizierung nutzbarer Grundwasserleiter
- Berücksichtigung der bekannten Zufluss- und Querflusshorizonte
- Identifizierung möglicher Leckagepfade
- Beurteilung der Wirksamkeit vorhandener Rohrtour-Zementationen, sofern diese nach der Verfüllungsrichtlinie berücksichtigt werden müssen
- Bewertung der Optionen für den Einbau dauerhafter Barrieren in die identifizierten Leckagepfade und Bewertung ihrer Realisierungsmöglichkeiten
- Auswahl der Verfüllungsmaterialien entsprechend ihrer Fähigkeit, die Bohrung unter den im Bohrloch herrschenden, auch künftigen Bedingungen (Drücke, Formationskompaktion, seismische und tektonische Kräfte, Temperatur, chemische und biologische Bedingungen) dauerhaft dicht zu verschließen
- ggf. Durchführung von Untersuchungen an repräsentativen Proben der Verfüllungsmaterialien unter repräsentativen Bedingungen zur Feststellung u. a. der Versteifungszeit und der Entwicklung der Druckfestigkeit im Falle von Bohrlochzementen
- Erstellen eines Verfüllungsprogramms, das die Anforderungen an die Bohrungsverfüllung sowie die für die Gefährdungen und Risiken erforderlichen Minderungs- und Kontrollmaßnahmen behandelt. Dabei sind alle spezifischen gesetzlichen Anforderungen zu berücksichtigen. Auslegung und Einbauplanung der Verfüllungsbarrieren, dass sie nach Einbau entsprechend den Akzeptanzkriterien verifiziert werden können
- Dokumentation des Verfüllungsprogramms (siehe auch [33]) mit:
 - Zu verfüllende Horizonte
 - Verfüllungsstrecken und Verfüllungsstoffen
 - ggf. Ablenkteufen sowie Bereiche, in denen bohrtechnische Schwierigkeiten aufgetreten und diese für die Sicherstellung des Verfüllungszieles von Bedeutung sind
 - Bohrlochbild
 - Verfahren für die Barriere-Verifizierung vor und während der Bohrungsverfüllung.

3.5.2. Verfüllungsdurchführung

PRAKTIKEN: DURCHFÜHRUNG DER BOHRUNGSVERFÜLLUNG

- Durchführung der Verfüllung gemäß zugelassenem Programm. Dabei Absperrung von
 - Kohlenwasserstoffführende Schichten
 - Überdruck-Wasser- oder Laugezonen
 - Schichten, in die Fluide injiziert wurden (z. B. Wasser, CO₂, Bohrklein-Rückinjektion)
 - Oberflächennahe Grundwasserleiter
- ggf. Durchführung von Messungen zur Beurteilung der Wirksamkeit vorhandener Rohrtour-Zementationen entsprechend den Anforderungen des Verfüllungsprogramms
- ggf. Squeeze-Zementierung auf Hinterrohr-Zementsationsabschnitte mit festgestellter oder vermuteter fehlernder bzw. schlechter Zementierung
- Nach Einbau der Verfüllungsbarrieren, Verifizierung entsprechend den Akzeptanzkriterien zum Nachweis, dass sich die Barrieren in ihrer Einbauseite befinden und eine Integrität aufweisen, die ihren Auslegungszielen entspricht, siehe auch Anhang B.

Zu Beispielen siehe LBEG [33], Norsok D-010 [4] oder Oil & Gas UK [5].

3.5.3. Dokumentation

- Aktualisierung des Verfüllungsprogramms zur Dokumentation der verfüllten Bohrung mit Barriere-Elementen im Einbauzustand entsprechend den Anforderungen in der Verfüllungsrichtlinie [33]. Die Dokumentation muss beinhalten
 o Verfüllungsbild
 o Verfüllungsstrecken und Verfüllungsstoffe
 o ggf. Bereiche in denen Sanierungsmaßnahmen durchgeführt wurden
 o Nachweise zur Barriere-Verifizierung und Ergebnis
- Wahrnehmung weiterer Dokumentationspflichten entsprechend den Anforderungen in der Verfüllungs-Richtlinie
 o für Erdöl- und Erdgasbohrungen: Dokumentation der Gesamtfördermenge (bei Erdölbohrungen Nassöl und Reinöl), die letzte Verwässerung sowie die Drücke bei Aufnahme und Ende der Produktion
 o für Einpress- und Versenkbohrungen: zusätzlich zu den Angaben unter Erdgas-/Erdölbohrungen Dokumentation der Mengen der eingeleiteten Stoffe
 o für Porenspeicher-Bohrungen: zusätzlich zu den Angaben unter Erdgas-/Erdölbohrungen Dokumentation von Anfangs- und Enddruck des Speicherbetriebes sowie Angaben zur Wiederherstellung eines ausgangsnahen Zustandes des Reservoirs vor Aufnahme des Speicherbetriebes
 o für Kavernen-Bohrungen: Angaben zur Verfüllung der Kaverne mit Flutungsmenge, Ergebnisse der Hohlraumvermessung, Ergebnisse von Integritätsuntersuchungen vor dem Verschluss, Daten aus dem Überwachungsbetrieb nach Flutung (Druckaufbau etc.)
- Regelung der Aufbewahrung der Dokumentation zur Verfüllung.
4. Literaturverzeichnis

[18] Norwegian Oil and Gas Association recommended guidelines for Well Integrity No.: 117 Established: 01.10.08 Revision no: 5 Date revised: 08.06.2016. Stavanger, Norway. https://www.norskoljeoggass.no/Global/Retningslinjer/Boring/117 Norwegian Oil and Gas recommended guidelines Well Integrity.pdf

[27] F. Crotogino, "SMRI Reference for External Well Mechanical Integrity Testing/Performance, Data Evaluation and Assessment," Solution Mining Research Institute, Short Class, SMRI Spring Meeting, Houston, 1996.

[60] UK Health & Safety Executive, „Principles and guidelines to assist HSE in its judgements that duty-holders have reduced risk as low as reasonably practicable,“ Principles and guidelines to assist HSE in its judgemenhttp://www.hse.gov.uk/risk/theory/alarp1.htm, 13.12.2001.

Anhang A: Gesetzliche und behördliche Vorgaben und technische Empfehlungen

<table>
<thead>
<tr>
<th>Bundesgesetze</th>
<th>Auslegungsgrundlagen</th>
<th>Auslegung</th>
<th>Herstellung</th>
<th>Betrieb</th>
<th>Verfüllung</th>
</tr>
</thead>
<tbody>
<tr>
<td>- LagerstG (1934): Lagerstättengesetz [34]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bundesrechtsverordnungen

<table>
<thead>
<tr>
<th>Bundesrechtsverordnungen</th>
<th>Auslegungsgrundlagen</th>
<th>Auslegung</th>
<th>Herstellung</th>
<th>Betrieb</th>
<th>Verfüllung</th>
</tr>
</thead>
</table>

4 Die Jahresangaben beziehen sich auf das Jahr der Ausfertigung. Angaben zur letzten Änderung sind im Literaturverzeichnis wiedergegeben.
<table>
<thead>
<tr>
<th>Ländergesetze</th>
<th>Auslegungsgrundlagen</th>
<th>Auslegung</th>
<th>Herstellung</th>
<th>Betrieb</th>
<th>Verfüllung</th>
</tr>
</thead>
</table>

| Länderverordnung/Erlasse | | | | | |

| Behördliche Vorgaben | | | | | |

<p>| Wichtige technische Empfehlungen | | | | | |</p>
<table>
<thead>
<tr>
<th>Quelle</th>
<th>Auslegungsgrundlagen</th>
<th>Auslegung</th>
<th>Herstellung</th>
<th>Betrieb</th>
<th>Verfüllung</th>
</tr>
</thead>
</table>
Anhang B: **Akzeptanztabellen**

1. **Barriere-Element Barriere-Formation**

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Beschreibung</td>
<td>Durchbohrte undurchlässige geologische Formation, die an den äußeren Futterrohrtour-Ringraum mit dem darin enthaltenen abdichtenden Material (Zement) angrenzt oder an Stopfen, die im Bohrloch platziert werden.</td>
<td></td>
</tr>
<tr>
<td>2. Funktion</td>
<td>Gewährleistung einer dauerhaften und undurchlässigen Abdichtung, die die Migration von Fluiden zur Oberfläche oder in angrenzende geologische Schichten verhindert.</td>
<td></td>
</tr>
</tbody>
</table>
| 3. Planung und Herstellung | Für die Formation in der erforderlichen Teufe gilt (M):
 1. Die Formation muss undurchlässig sein
 2. Der Bohrpfad in dieser Formation muss abseits von Rissystemen und/oder Störungen verlaufen, die zu Abflüssen oder Querflüssen führen können
 3. Die ECD (Equivalent Circulation Density) muss kleiner als der Fracgradient sein
 4. Barriere-Formationen dürfen durch Änderungen des Lagerstättendrucks in ihren Eigenschaften nicht beeinträchtigt werden (Depletion, Kompaktion, Fracking, Re-Aktivierung von Störungen)
| 4. Erst-Nachweis | Die Formationsintegrität muss durch eine der folgenden Methoden nachgewiesen werden (M):
 1. FIT
 2. LOT, sollte gefolgt werden von einer Einschließphase
 3. XLOT, wenn die minimale Horizontalspannung noch nicht bekannt ist
 4. dokumentiertes geologisches Modell. | |
| 5. Überwachung, Überprüfung | Keine | |
2. Barriere-Element Futterrohrtour

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Beschreibung</td>
<td>Futterrohrtour/Liner</td>
<td></td>
</tr>
<tr>
<td>2. Funktion</td>
<td>1. Bohrung nach außen hin abschließen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Fluss von Produktions- und Injektionsfluiden auf das Innere der verrohrten Bohrung beschränken</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Anwendung von Sicherheitsfaktoren die u.a. Korrosion und Verschleiß berücksichtigen, Einbeziehung der Untertage-Temperatur für die Minderung der Streckgrenze (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Berücksichtigung von Biegebelastungen während des Einbaus für abgelenkte und horizontale Bohrungen (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Anwendung von akzeptierten und in technischen Regelwerken dokumentierten Berechnungsmethoden (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Gasbohrungen: Auslegung drucktragender Futterrohre im Kontakt mit Gas gasdicht. Ausnahme: Ankerrohrtour, die Shallow Gas unter erwartetem normalen Drucken ausgesetzt sein kann (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Lagerung und Handhabung von für den Einbau bestimmten Rohren, die Schäden am Rohrkörper und an den Gewinden vor Einbau vermeidet (S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Konditionierung des Bohrloches vor Einbau (S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Bei Schraub-Verbindung: Herstellung der Verbindungen nach Herstellervorgaben. Drehmomentaufzeichnung mit Verschraub-Diagramm zur Auswertung bei gasdichten Verbindern (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Bei Verschweißung: Zerstörungsfreie Schweißnähtprüfung (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Rohrtour-Zentrierung im zu zementierenden Bohrlocbereich mit Hilfe von Zentralisatoren, deren Anzahl und Position rechnerisch bestimmt wird. (S)</td>
<td></td>
</tr>
<tr>
<td>4. Erst-Nachweis</td>
<td>Nachweis, dass die Bohrung den höchsten anzunehmenden Druckbelastungen in ihrem Lebenszyklus standhält.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Der Wirksamkeitsnachweis setzt sich zusammen aus der Qualitätskontrolle beim Hersteller, einer Montage gemäß definierter Montageanleitung und einem hydraulischen Dichtigkeitstest im Bohrloch. Vorgaben für die anzulegenden Differenzdrücke in Bezug auf den Dichtigkeitstest sind in einem Arbeitsprogramm zu definieren (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Bei Dichtheitstest im Rahmen des Zementationsvorganges: Aufgabe eines Druckes nach Stopfenanschlag deutlich höher als der letzte (auswertbare) Zirkulationsdruck vor Anschlag [min. 10 bar bis zu 100 bar bzw. 70% des Rohrinnendruckfestigkeit, s.a. 3.3.3], der sich über 10 Minuten hinweg nicht ändert (M)</td>
<td></td>
</tr>
<tr>
<td>Testdauer sollte mindestens min. 30 Minuten betragen. In dieser Zeit muss in der Druckentwicklung eine klare Tendenz zu einem stabilen Druckendwert erkennbar sein, der mehr als 90% des Ausgangswertes beträgt, s.a. 3.3.3 (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kavernen, vor Beginn des Solprozesses: Nachweis der hydraulischen bzw. der (technischen) Gasdichtheit der letzten zementierten Rohrtour und der Rohrschuhzementation unter Ansatz der Anforderungen des im Solprozess eingesetzten Blankets (flüssig oder gasförmig) (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Flüssigkeits-Kavernen, vor Erstbefüllung: erneuter Nachweis der hydraulischen bzw. (technischen) Gasdichtheit der Rohrtour und des Rohrschuhes der letzten zementierten Rohrtour (M)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Überwachung, Überprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bei geschlossenem Ringraum, Druck-Überwachung von RR I (M), Druck-Überwachung der Folge-Ringräume in regelmäßigen Abständen, jeweils mit Vorgabe von Schwellwerten (M)</td>
</tr>
<tr>
<td>2. Ereignisabhängig (M) und ggf. bei Aufwältigungserfordernis/ Umnutzung, Überprüfung der fluidbenetzten Produktionsrohrtour auf Korrosion und Abnutzung durch z. B. Inspektion und/oder Drucktest.</td>
</tr>
<tr>
<td>Merkmal</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>1. Beschreibung</td>
</tr>
</tbody>
</table>
| 4. Erst-Nachweis | 1. Drucktest nach Aufbohren des Zementes mit dem höchsten zu erwartenden Druck, mit dem dieser Rohrschuh und der unmittelbar darunterliegende Gesteinsabschnitt im Laufe der Herstellung und des Betriebes der Bohrung belastet wird (S)
2. Feststellung des zementierten Intervalls durch eine der nachfolgenden Methoden: (M)
a. Messung des Zementkopfes (z. B. Temperaturmessungen)
b. Verdrängungseffizienz basierend auf Aufzeichnungen des Zementationsvorganges (verpumpte Volumen, Rückfluss während der Zementation, etc.) in Übereinstimmung mit dem Zementationsprogramm
c. Bei Abweichungen vom Programm sowie für Produktionsrohrtouren, Nachweis der Zementation durch alternative Verifizierungsverfahren, z. B. akustische Bohrlochmessungen. Die Messungen sollten azimutale/segmentierte Daten liefern
3. Für die Qualifizierung einer Zementation als BohrungsbARRIERE-Element, Nachweis von Mindestrecken für die Zementation oberhalb eines Zuflusshorizontes: (M)
a. 50m MD bei Zementationen, nachgewiesen durch Verdrängungsberechnungen oder 30m MD bei Nachweisen durch Messungen
b. 2 x 30 m MD bei Nachweisen durch Messungen wenn die Zementation Teil der ersten und der zweiten Barriere ist
5. Kavernen, vor Beginn des Solprozesses: Nachweis der hydraulischen bzw. (technischen) Gasdichtheit der gesamten Bohrung einschließlich der letzten zementierten Rohrtour unter Ansatz der Anforderungen des im Solprozess eingesetzten Blankets (flüssig oder gasförmig) (M)
6. Flüssigkeits-Kavernen, vor Erstbefüllung: erneuter Nachweis der hydraulischen bzw. (technischen) Gasdichtheit der Rohrtour und des Rohrschuhes der letzten zementierten Rohrtour (M)

| 5. Überwachung, Überprüfung | 1. Regelmäßige Druck-Überwachung der Ringräume oberhalb von Zementationen (M)
2. Ereignisabhängig und ggf. bei Aufwältigungserfordernis/ Umnutzung Messung der Zementation, vorzugsweise bei Vorlage einer Nullmessung (K)
4. Barriere-Element Produktionspacker

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
</table>
| 2. Funktion | 1. Schaffung eines dichten Abschlusses für den Ringraum zwischen Steigrohrstrang und Produktionsrohrtour und/oder Produktionsliner, um Kommunikation zwischen Formation und Ringraum I zu unterbinden
| 3. Planung und Herstellung | 1. Auslegung für erwartete Betriebs- und Fluid-Bedingungen (M)
2. Packer Herstellung und Test nach ISO 14310 (S)
3. Bohrungsvorbereitung, z. B. durch entsprechende Reinigungen, um einen störungsfreien Setzvorgang sowie einen direkten Kontakt des Packerelementes zur Rohrwandung sicherzustellen (M)
4. Packer-Setzteufe, die sichert dass Leckagen von Produktionsrohrtour und/oder Produktionsliner unterhalb des Packers von Barrieren sicher umschlossen sind. (M) | ISO 14310 |
| 4. Erst-Nachweis | 1. Qualitätskontrolle beim Hersteller (M)
2. Ringraumdruckprobe nach Setzen (M)
3. Belastungsteste nach Setzen auf Kompression/Zug sofern technisch machbar. (K) | |
| 5. Überwachung, Überprüfung | Regelmäßige, ggf. kontinuierliche Druck-Überwachung von RR A am Bohrlochkopf. (M) | |
5. **Barriere-Element Steigrohrstrang**

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Beschreibung</td>
<td>Steigrohrstrang</td>
<td></td>
</tr>
</tbody>
</table>
| 2. Funktion | 1. Schaffung eines Fließweges für Reservoir Fluide bis zu Tage bzw. von Injektionsfluiden in das Reservoir
2. In der Regel Barriere-Element bei Anwendung des zwei Barrieren Prinzips. | |
| | 2. Gasbohrungen: Für Stränge, die während ihrer Lebensdauer mit Gas in Kontakt kommen, gasdichte Auslegung aller Komponenten des Steigrohrstranges (M) | |
| | 4. Definition von Sicherheitsbeiwerten unter Berücksichtigung von z. B. Temperatureffekten, Korrosion, Abnutzung (M) | |
| | 5. Steigrohrstrang-Auswahl unter Berücksichtigung von z. B. (S) | |
| | a. Belastungen durch Zug und Druck | |
| | b. Berst und Kollaps Kriterien | |
| | c. Fließraten im Steigrohr und ggf. im Ringraum | |
| | d. Korrosive und abrasive Bestandteile | |
| | e. Festigkeitsreduktion durch Temperatureffekte | |
| | 6. Bei verschraubten Rohren für „Gasproduktion/-injektion“: Herstellung gasdichter Premium-Verbindungen (CAL III oder CAL IV) unter Beachtung der Herstellervorgaben mit protokollierter drehmomentkontrollierter Verschraubung (z. B. Torque-Turn-Diagramm) (M) | |
| 4. Erst Nachweis | Verschraubte Rohre: Verschraubprotokoll (Torque-Turn-Diagramm bzw. „Torque-Position-Record“) (M), In der Regel Drucktest in Kombination mit Packer (K) | |
| | Verschweißte Rohre: Drucktest, ZIP. (M) | |
| 5. Überwachung, Überprüfung | Regelmäßige, ggf. kontinuierliche Druck-Überwachung von RR A mit Vorgabe von Schwellwerten. (M) | |
6. Barriere-Element Untertage Sicherheitsventil (übertägig angesteuert)

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
</table>
| 2. Funktion | 1. Barriere-Element für das aktive Einschließen einer Bohrung
2. Verhinderung des Flusses von Fluiden in Richtung übertage durch selbständiges Schließen im Falle eines Bruchs der Bohrlochverflanschung. | |
| 3. Planung und Herstellung | 1. Auslegung für erwartete Betriebs- und Fluid-Bedingungen (M)
2. Ausführung betriebssicher, selbsttätig schließend. (M) | API Spec 14A/ISO10432 API RP 14B BVOT |
| 5. Überwachung, Überprüfung | 1. Überprüfen von Funktionsfähigkeit und Dichtheit des UTSV in regelmäßigen Abständen, mindestens gemäß anwendbarer BVOT (M) | ANSI/API RP 14B ISO 10417 BVOT |
7. **Barriere-Element Untertage Sicherheitsventil (untätigt angesteuert)**

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Funktion</td>
<td>Verhinderung des Flusses von Fluiden in Richtung übertage durch selbständiges Schließen im Falle eines Bruchs der Bohrlochverflanschung</td>
<td></td>
</tr>
</tbody>
</table>
| 3. Planung und Herstellung | 1. Auslegung für erwartete Betriebs- und Fluid-Bedingungen (M)
2. Ausführung betriebssicher, selbsttätig schließend. (M) | API Spec 14A/ISO10432
API RP 14B
BVOT |
| 5. Überwachung, Überprüfung | 1. Überprüfen von Funktionsfähigkeit und Dichtheit des UTSV in regelmäßigen Abständen, mindestens gemäß anwendbarer BVOT (M)
2. Überprüfen der Leckageraten entsprechend ANSI/API RP 14B. (M) | ANSI/API RP 14B
ISO 10417
BVOT |
8. Barriere-Element Bohrlochkopf

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
</table>
| 3. Planung und Herstellung | 1. Der Nenndruck jeder Sektion des Bohrlochkopfes muss größer sein als der maximale Bohrlochkopf-Schließdruck, der die jeweilige Sektion während ihres Lebenszyklus ausgesetzt sein kann plus einen definierten Sicherheitsbeiwert (M)
2. Der Kopf muss für alle Ringräume über Vorrichtungen zum Anschluss von Messeinrichtungen verfügen, um ein Monitoring der Ringraumdrücke sowie ein Zuführen/Ablassen von Fluiden in/aus dem Ringraum zu erlauben (M)
3. Ist vorgesehen, durch den Bohrlochkopf aus/in einen Ringraum zu produzieren/injizieren, muss der Bohrlochkopf entsprechend ausgelegt und qualifiziert werden, um die Integrität der Bohrung zu gewährleisten (M)
4. Futterrohr-Abhängevorrichtungen müssen eine Abdichtung im Normalbetrieb und in Bohrlochkontroll-Situationen gewährleisten (M)
5. Installation entsprechender Absperreinrichtungen an den jeweiligen Seitenauslässen. (M) | ISO 10423
API Spec 6A |
| 4. Erst-Nachweis | Der Bohrlochkopf sowie die Ringraumzugänge mit Absperreinrichtungen und Futterrohr Dichtelemente müssen für den jeweiligen Betriebsdruck auf Dichtheit geprüft werden. (M) | |
| 5. Überwachung, Überprüfung | 1. Prüfung der Ringraum Armaturen an den Seitenauslässen in regelmäßigen Abständen auf Funktionsfähigkeit, mindestens gemäß anwendbarer BVOT (M)
2. Regelmäßige, ggf. kontinuierliche Drucküberwachung von Ringraum A zur Identifikation von Druck-Anomalien. Überprüfung der Drücke der anderen Ringräume in regelmäßigen Abständen (M)
4. Überprüfung zugänglicher Dichtelemente ereignisabhängig auf Dichtheit, mindestens gemäß anwendbarer BVOT (M)
5. Regelmäßige Inspektion des Bohrlochkopfes im Rahmen von Lokationsbefahrungen auf seinen allgemeinen Zustand sowie auf Anzeichen von Leckagen oder Blasenbildung, mindestens gemäß anwendbarer BVOT. (M) | |
9. Barriere-Element Eruptionskreuz

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
</table>
2. Schaffung eines vertikalen Zugangs für die Einfahrt von Werkzeugen in das Bohrloch durch die Swab-Armatur
| 3. Planung und Herstellung | Auslegung erfolgt nach open flow Potential Erfordernis mit ein oder zwei Barrieren. (M) Weitere Details s. Barriere Diagramme, siehe Anhang C
Ausstattung des Eruptionskreuzes mit mindestens einer Hauptabsperr-Armatur und Absperrhähnen für Leitungen nach Untertage (M)
Gasspeicherbohrungen: Auf Clusterplätzen von Gasspeicherbohrungen Planung der Eruptionskreuze zusätzlich feuerresistent gemäß API 6 FA. (K) | ISO 10423
API Spec 6A
API Spec 6FA
API Spec 6FB
API Spec 6FC |
| 4. Erst-Nachweis | Test aller Absperreinrichtungen und Verflanschungen des Eruptionskreuzes mit dem Bohrlochkopf bis mindestens dem 1,3-fachen des zu erwartenden maximalen Betriebsdruckes. (M) | API Spec 6A |
| 5. Überwachung, Überprüfung | 1. Prüfung aller Absperrarmaturen in regelmäßigen Abständen auf Funktionsfähigkeit und Dichtheit, mindestens gemäß BVOT (M)
2. Jährlicher Test von angesteuerten Sicherheitsarmaturen entsprechend Herstellerspezifikation und Betriebsfestlegungen. (M) | API Spec 6A |
10. Barriere-Element Zementstrecke

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Anforderung (Akzeptanzkriterium)</th>
<th>Siehe auch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Beschreibung</td>
<td>Zementstein in Form eines zementierten Abschnittes im Bohrloch.</td>
<td></td>
</tr>
<tr>
<td>2. Funktion</td>
<td>Verhinderung des Flusses von Formationsfluiden in einem Bohrloch zwischen Formationen und/oder zur Oberfläche.</td>
<td></td>
</tr>
</tbody>
</table>
| 3. Planung und Herstellung | 1. Labor-Untersuchung mit Trockenmaterial und Additiven von der Bohrungslokation unter repräsentativen Bohrlochbedingungen zur Feststellung u.a. der Versteifungszeit und der Entwicklung der Druckfestigkeit (M)
2. Zementgüten/-dichten auf der Basis von Poren- und Frackdruck-Prognosen sowie erwartetem Druck, Temperatur, Fluidzusammensetzung, mechanischen und chemischen Belastungen und Wechselbelastungen (M)
3. Anzahl und Längen der Zementstrecken im Minimum entsprechend den Anforderungen der LBEG Verfüllungs-Richtlinie. (M) | LBEG Verfüllungs-Richtlinie
API Spec 10A Class ‘G’ |
| 4. Erst-Nachweis | 1. Drucktest der untersten Zementstrecke im Rohr oberhalb der offenen Formation oder einem zu zementierenden Rohrschnitt in Fließrichtung oder von oben (M)
2. Test der weiteren Zementationsstrecken durch abtasten (M)
3. Bewertung der Zementation auf Basis der Zementationsausführung, unter Berücksichtigung von Bohrlochgröße, verpumptem Volumen und Rücklauf (M)
4. Nachweisarten: | |
| | Offenes Bohrloch | Abtasten |
| | Abtasten | Drucktest mit einem Druck:
a. Deutlich oberhalb des geschätzten Leak-off Druckes unterhalb der Rohrtour (als potentiellen Leckagepfad)
b. der den Futterrohr Berstdruck (korrigiert für Verschleiß) nicht über-
schreitet
Wenn die Zementationsstrecke auf eine druckgetestete Basis aufgebracht wurde, ist kein Drucktest erforderlich |
| 5. Überwachung Überprüfung | n.a. | |

Stand: 07/2017
Anhang C: Bohrungsbarriere-Diagramme

C.1 Erdgasbohrung mit UTSV
C.2 Erdgasbohrung ohne UTSV

[Diagramm der Erdgasbohrung ohne UTSV mit Markierungen für Barrierefunktionen und Drucktesten]

<table>
<thead>
<tr>
<th>Barrieren</th>
<th>Bohrungstrag Eingeschlossen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Code</td>
</tr>
<tr>
<td>Crevice barrier</td>
<td>1</td>
</tr>
<tr>
<td>Dichtung</td>
<td>2</td>
</tr>
<tr>
<td>Produktion</td>
<td>3</td>
</tr>
<tr>
<td>Produktionsrohr</td>
<td>4</td>
</tr>
<tr>
<td>Steigrohr</td>
<td>5</td>
</tr>
<tr>
<td>Steigeingang</td>
<td>6</td>
</tr>
<tr>
<td>E-Kreuz Körper</td>
<td>7</td>
</tr>
<tr>
<td>Unterer</td>
<td>8</td>
</tr>
</tbody>
</table>

Details siehe Akzeptanztabellen

Geführt: Datum: 17.05.2016

Original: DIN A4

Ertrag: Gez.: Gegr.:
C.3 Erdölbohrung

| 1. Lagerstätte | 2. Ringraum A |

Barriere | Bohrungstatus | Eingeschlossen

- **Wellbarriere**
 - **Barrieren**
 - Cementintervall
 - Produktionsrohr
 - Bohrlochkopf
 - Staglochhänger
 - E-Kreuz Körper
 - Stopfbuchse

<table>
<thead>
<tr>
<th>Nummer Barriere</th>
<th>Well Barrier Element</th>
<th>Code</th>
<th>Ertragswerts Beispiel</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geologisches Modell</td>
<td>1</td>
<td>NA nach Initialprüfung</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50m Nachweis durch</td>
<td>2</td>
<td>NA nach Initialprüfung</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Drucktest</td>
<td>3</td>
<td>Überwachung Ringraum A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Drucktest</td>
<td>4</td>
<td>Überwachung Ringraum A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Drucktest</td>
<td>5</td>
<td>Überwachung Ringraum A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Drucktest</td>
<td>6</td>
<td>Visuelle Kontrolle</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Drucktest</td>
<td>7</td>
<td>Visuelle Kontrolle</td>
<td></td>
</tr>
</tbody>
</table>

Details siehe Akzeptanztabellen

Erdölbohrung ohne open flow potential

Dateiname: Bohrungsbarrieren.vsd

Datum: 17.05.2016 04.08.2016
Datum: Gez.:
C.4 Flüssigkeitsgefüllte Kaverne

<table>
<thead>
<tr>
<th>Bannerniveau</th>
<th>Bohrungsstatus Eingrenzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Barrieren</td>
<td>Nahezu in jeder Prüfung</td>
</tr>
<tr>
<td>2. Zement</td>
<td>Zementionsprache, Grundlage für Druckprüfung</td>
</tr>
<tr>
<td>3. Produktionsleitung</td>
<td>Gesamtdiagramm</td>
</tr>
<tr>
<td>4. Produktionsleitung</td>
<td>Drucktest, Versuchsdokumentation</td>
</tr>
<tr>
<td>5. Verflüssigung</td>
<td>Drucktest, Periodischer Drucktest</td>
</tr>
<tr>
<td>6. Hanger</td>
<td>Drucktest, Periodischer Drucktest</td>
</tr>
<tr>
<td>7. Drucktest</td>
<td>Drucktest, Periodischer Drucktest</td>
</tr>
<tr>
<td>8. Drucktest</td>
<td>Drucktest, Periodischer Drucktest</td>
</tr>
<tr>
<td>9. Drucktest</td>
<td>Drucktest, Periodischer Drucktest</td>
</tr>
<tr>
<td>10. Drucktest</td>
<td>Drucktest, Periodischer Drucktest</td>
</tr>
</tbody>
</table>

Flüssigkeitsgefüllte Kaverne

(Rohöl, Benzin, u.a.)

<table>
<thead>
<tr>
<th>Geändert:</th>
<th>Geprüft:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum: 20.09.2016</td>
<td>Gez.: Kruck / KB</td>
</tr>
<tr>
<td>Original-Blattgröße: DIN A4</td>
<td>Gez.: Gepr.:</td>
</tr>
</tbody>
</table>

Bundesverband Erdgas, Erdöl und Geoenergie e.V.

TECHNISCHE REGEL

BohrungsinTEGRITät
C.5 Flüssigkeitsgefüllte Kaverne mit Überwachungsringraum

Diagramm

Tabelle: Bohrungsstatus

<table>
<thead>
<tr>
<th>Primäre Barriere</th>
<th>Bohrungsstatus</th>
<th>Eingeschlossen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salzstock</td>
<td>Drucktest</td>
<td>NA nach Inhalt Prüfung</td>
</tr>
<tr>
<td>Produktionszylinder</td>
<td>Drucktest</td>
<td>Überwachung Ringraum C</td>
</tr>
<tr>
<td>Sieberührer</td>
<td>Drucktest</td>
<td>Überwachung Ringraum C</td>
</tr>
<tr>
<td>Bohrbohrkopf Unterteil</td>
<td>Drucktest</td>
<td>Periodischer Drucktest</td>
</tr>
<tr>
<td>Hänger unterer Tubing</td>
<td>Drucktest</td>
<td>Überwachung Ringraum B</td>
</tr>
<tr>
<td>Bohrbohrkopf Oberteil</td>
<td>Drucktest</td>
<td>Periodischer Drucktest</td>
</tr>
<tr>
<td>Tubing-Hänger</td>
<td>Drucktest</td>
<td>Überwachung Ringraum A</td>
</tr>
<tr>
<td>Injectionswasser-Löcher</td>
<td>Drucktest</td>
<td>Periodischer Drucktest</td>
</tr>
</tbody>
</table>

** Sekundäre Barriere **

<table>
<thead>
<tr>
<th>Sekundäre Barriere</th>
<th>Bohrungsstatus</th>
<th>Eingeschlossen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salzstock</td>
<td>Drucktest</td>
<td>NA nach Inhalt Prüfung</td>
</tr>
<tr>
<td>Produktionszylinder</td>
<td>Drucktest</td>
<td>Überwachung Ringraum C</td>
</tr>
<tr>
<td>Sieberührer</td>
<td>Drucktest</td>
<td>Überwachung Ringraum C</td>
</tr>
<tr>
<td>Bohrbohrkopf Unterteil</td>
<td>Drucktest</td>
<td>Periodischer Drucktest</td>
</tr>
<tr>
<td>Hänger unterer Tubing</td>
<td>Drucktest</td>
<td>Überwachung Ringraum B</td>
</tr>
<tr>
<td>Bohrbohrkopf Oberteil</td>
<td>Drucktest</td>
<td>Periodischer Drucktest</td>
</tr>
<tr>
<td>Tubing-Hänger</td>
<td>Drucktest</td>
<td>Überwachung Ringraum A</td>
</tr>
<tr>
<td>Injectionswasser-Löcher</td>
<td>Drucktest</td>
<td>Periodischer Drucktest</td>
</tr>
</tbody>
</table>

Legende: gemeinsame Barrierelemente

Flüssigkeitsgefüllte Kaverne mit Überwachungsringraum

(Rohöl, Benzin, u.a.)
C.6 Erdgas Kaverne mit UTSV

<table>
<thead>
<tr>
<th>Barriere</th>
<th>Bohrungs-Integrität-Prüfungspunkte</th>
<th>Monitoring (Beispiele)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drucktest, Geologisches Modell</td>
<td>N/A nach initialer Prüfung</td>
</tr>
<tr>
<td>2</td>
<td>Drucktest, 30 Min. Nachweis durch Messung</td>
<td>Überwachung Ringraum B</td>
</tr>
<tr>
<td>3</td>
<td>Drucktest, Verschraubungsdiagramm/Sicherheitsprüfung</td>
<td>Überwachung Ringraum B</td>
</tr>
<tr>
<td>4</td>
<td>Drucktest, Verschraubungsdiagramm/Sicherheitsprüfung</td>
<td>Überwachung Ringraum A</td>
</tr>
<tr>
<td>5</td>
<td>Drucktest, Verschraubungsdiagramm/Sicherheitsprüfung</td>
<td>Überwachung Ringraum A</td>
</tr>
<tr>
<td>6</td>
<td>Drucktest, Gewirrprüfung</td>
<td>Periodischer Drucktest</td>
</tr>
</tbody>
</table>

Details siehe Akzeptanzkaverne

ErdgasKaverne mit UTSV

Gez.: Knack / KBB
Gepr.:
C.7 Erdgas Kaverne ohne UTSV
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
<th>Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARP</td>
<td>so niedrig, wie vernünftigerweise praktikabel (en: as low as reasonably practicable)</td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>Amerikanisches Erdölinstitut (en: American Petroleum Institute)</td>
<td></td>
</tr>
<tr>
<td>ASV</td>
<td>Ringraum-Sicherheitsventil (en: annulus safety valve)</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Bohrungsbarriere-Element (en: well barrier element)</td>
<td></td>
</tr>
<tr>
<td>BOP</td>
<td>Blowout-Preventer (en: blow out preventer)</td>
<td></td>
</tr>
<tr>
<td>ECD</td>
<td>äquivalente Zirkulationsdichte (en: equivalent circulation density)</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>Notabschaltung (en: emergency shutdown)</td>
<td></td>
</tr>
<tr>
<td>FIT</td>
<td>Formationsintegritätstest (en: formation integrity test)</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Innendurchmesser (en: internal diameter)</td>
<td></td>
</tr>
<tr>
<td>KPI</td>
<td>Leistungskennzahl (en: key performance indicator)</td>
<td></td>
</tr>
<tr>
<td>LOT</td>
<td>Formationsdrucktest (en: leak-off test)</td>
<td></td>
</tr>
<tr>
<td>MAASP</td>
<td>höchstzulässiger Ringraumkopfdruck (en: maximum allowable annular surface pressure)</td>
<td></td>
</tr>
<tr>
<td>MASP</td>
<td>höchstzulässiger Kopfdruck (en: maximum allowable surface pressure)</td>
<td></td>
</tr>
<tr>
<td>NORM</td>
<td>natürlich vorkommendes radioaktives Material (en: naturally occurring radioactive material)</td>
<td></td>
</tr>
<tr>
<td>NORSOK</td>
<td>Normungorganisation der norwegischen Erdölindustrie (nor: Norsk Sokkels Konkurranseposisjon)</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>Außendurchmesser (en: outer diameter)</td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td>Qualitätssicherung (en: quality assurance)</td>
<td></td>
</tr>
<tr>
<td>QC</td>
<td>Qualitätslenkung (en: quality control)</td>
<td></td>
</tr>
<tr>
<td>RAM</td>
<td>Risikomatrix (en: risk assessment matrix)</td>
<td></td>
</tr>
<tr>
<td>SCP</td>
<td>anhaltender Ringraumdruck (en: sustained casing pressure)</td>
<td></td>
</tr>
<tr>
<td>SPM</td>
<td>Seitentaschen-Mandrel (en: side pocket mandrel)</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>Zementkopf (en: top of cement)</td>
<td></td>
</tr>
<tr>
<td>UTSV</td>
<td>Untertage-Sicherheitsventil (en: subsurface safety valve, SSSV)</td>
<td></td>
</tr>
<tr>
<td>XLOT</td>
<td>erweiterter Formationsdrucktest (en: extended leak-off test)</td>
<td></td>
</tr>
<tr>
<td>ZIP</td>
<td>Zerstörungsfreie Werkstoffprüfung</td>
<td></td>
</tr>
</tbody>
</table>

5) NORSOK-Normen werden durch die norwegische Erdölindustrie erarbeitet, um angemessene Sicherheit, Wertsteigerung und Kosteneffizienz für Entwicklungen und Unternehmungen der Erdölindustrie sicherzustellen.
Anhang E: Begriffsbestimmungen

Für die Anwendung dieses Dokuments gelten die folgenden Begriffe:

Abweichung: Abgehen von einem Standard.

Akzeptanzkriterium: festgelegter Zulässigkeitsgrenzwert für die Eigenschaften von Prozessen, Dienstleistungen oder Produkten.

ALARP: Bewertung der Risikominderung, unter Berücksichtigung des zu vermeidenden Risikos, und des bei der Ergrei- fung von Maßnahmen zur Vermeidung dieses Risikos entstehenden Aufwands (Geld, Zeit und Arbeit) sowie Vergleich dieser beiden.

Anmerkung 1 zum Begriff: Siehe UK HSE in [57]

Anhaltender Ringraumdruck, SCP: Druck in einem Ringraum, der
a) am Bohrlochkopf gemessen werden kann und sich nach Entlastung erneut mindestens bis zum gleichen Druckniveau aufbaut
b) nicht ausschließlich durch Temperaturschwankungen verursacht wird
c) nicht durch den Betreiber der Bohrung aufgebracht wurde.

Anmerkung 1 zum Begriff: Übernommen aus API RP 90 [58]

Anker-Rohrtour: Rohrtour, die zum Schutz oberflächennaher Grundwasserzonen und Formationen geringer Festigkeit innerhalb des Standrohrs eingebaut wird. Sie trägt beim Weiterbohren den Blowout Preventer (s. a. Verrohrung).

Anmerkung 1 zum Begriff: Übernommen aus API RP 90 [58]

Ausfall: Verlust der vorgesehenen Funktion.

Ausfallart: Beschreibung des Ausfallmechanismus.

Ausfluss: Fluide, die von einem Ort zu einem anderen fließen, gewöhnlich aus einem Bohrloch oder einer Rohrleitung.

Ausnahmeregelung: Betriebssinterne Regelung eines Betriebes in Abweichung von normalen Regeln oder Bedingungen.

Beeinträchtigung: Zustand verringriger Funktionsfähigkeit, aber noch kein Ausfall.

Betriebliche Barrieren: Kombination von Praktiken, Prozeduren, Überwachungs- und Steuerungssystemen, um Bohrungsbarrieren auszulegen und Barriere-Elemente auszuwählen, ihre Wirksamkeit nach Einbau nachzuweisen, einen Bohrungsbetrieb innerhalb der Leistungsgrenzen der Barriere-Elemente sicherzustellen, die Wirksamkeit der Barriere-Elemente über die Lebensdauer der Bohrung zu erhalten und wiederkehrend nachzuweisen, sowie Anomalien und Ausfälle von integritätsrelevanten Komponenten zu managen.

Betriebsgrenzen: Reihe festgelegter Kriterien oder Grenzen, außerhalb der eine Einrichtung nicht betrieben oder ein Prozess nicht ausgeführt werden sollte.

Betriebsplan: Vom Bergbauunternehmer aufzustellender und von der Bergbehörde zu prüfender und zulassender Plan, auf dessen Grundlage ein Bergbaubetrieb geführt wird. Das Bundesberggesetz (BBergG) sieht als Betriebspläne vor: Rahmenbetriebsplan, Hauptbetriebsplan und Sonderbetriebsplan.

Hauptbetriebspläne sind die zentralen Dokumente bzw. Genehmigungen für die Führung eines Bergbaubetriebes. Hauptbetriebspläne sind in der Regel auf einen 2 Jahre nicht überschreitenden Zeitraum aufgestellt und zugelassen. Im Hauptbetriebsplan sind die Organisation des Betriebes, die wesentlichen Betriebseinrichtungen und Anlagen und die angewandten Techniken bzw. Technologien beschrieben.

Der letzte Hauptbetriebsplan eines Bergbaubetriebes, in dem die Maßnahmen zur Stilllegung und Wiedernutzbarmachung dargestellt und genehmigt werden, wird auch Abschlussbetriebsplan genannt.

Für besondere Vorhaben kann die Bergbehörde die Vorlage von Sonderbetriebsplänen verlangen, die dann der Beschreibung und Genehmigung bestimmter Vorhaben oder auch nur Teilen davon dienen. Der Inhalt von Betriebsplänen richtet sich nach § 52 Bundesberggesetz und das Zulassungsverfahren nach § 54 Bundesberggesetz.

Bohrlochkopf: Verschluss der Bohrung an der Oberfläche mit dem Kolonnenkopf zur mechanischen Verankerung und gegenseitigen Abdichtung der in die Bohrung eingebauten Rohrtour. Während der Bohrungsherstellung dient er als Montageplattform für die Bohrloch-Preventer, während der Förderung als Montageplattform für den Steigrohrhänger und das Eruptionskreuz.

Bohrlochmessung: Geophysikalische Messungen im Bohrloch zur Untersuchung mit den unterschiedlichsten Zielen. Gemessen werden dabei die verschiedenen geometrischen und physikalischen Parameter, z. B.
- Intensität der natürlichen Gamma-Strahlung des Gebirges (Gehalt an Tonmineralen)
- die Laufzeit des Gebirges (Porosität)
- der spezifische elektrische Widerstand des Gebirges, (Art des Poreninhaltes, Wassersättigung)
- die Temperatur im Bohrloch in Abhängigkeit von der Teufe
- die Bohrochgeometrie (Kaliber, Neigung, Richtung).

Bohrspülung (Bohrschlamm): Eine Flüssigkeit, die während der Bohrlocherstellung durch den Bohrstrang hinunter zum Meißel gepumpt wird und über den Ringraum zwischen Bohrstrang und Gebirge wieder nach oben steigt. Wichtigste Aufgaben der umlaufenden Bohrspülung sind Reinigen der Bohrlochsohle und Austrag des erbohrten Bodenmaterials (Bohrklein) sowie Gewährleistung von Bohrochintegrität und Formationsstabilität.

Bohrungs-Betreiber: Unternehmen, welches die Verantwortung für das Bohrloch trägt.

Anmerkung 1 zum Begriff: Übernommen aus API RP 90 [58]

Bohrungs-Betriebsgrenzen: Kombination aus vom Betreiber festgelegten Kriterien zur Sicherstellung, dass eine Bohrung innerhalb ihrer Auslegungs Grenzen betrieben wird als Voraussetzung dafür, dass die Integrität der Bohrung während ihres gesamten Lebenszyklus beibehalten werden kann.

Bohrungsbarriere: System aus einem oder mehreren Bohrungsbarriere-Element(en), die Fluide in einem Bohrloch einschließen, um deren unkontrollierten Fluss innerhalb oder aus einer Bohrung zu verhindern.

Bohrungsbarriere-Element (BE) (auch Well Barrier Element, WBE): eine oder mehrere zusammenhängende physikalisch/mechanische Komponente(n) die zusammen eine Bohrungsbarriere bilden.

Bohrungsbestand: Portfolio von Bohrungen, für deren Integrität der Bohrungs-Betreiber verantwortlich ist.

Bohrungsintegrität: Eine Bohrung gilt als technisch integer, wenn sie unbeschädigt ist und sicher betrieben werden kann, sodass ein

- unbeabsichtigter Verlust der Umschließung (des sogenannten „Containment“) des Bohrungsinners
- Fluid-Austritt in die Umwelt
- Fluid-Bewegung zwischen durchteuften Formationen

nicht zu besorgen ist, d.h. wenn sie technisch dicht ist.

Bohrungsstatus: aktuelle Betriebsfunktion der Bohrung.

Anmerkung 1 zum Begriff: Die Funktionen schließen ein: in der Herstellungsphase, in der Betriebsphase (d. h. Förderung, Injektion, Eingeschlossen), in der Interventions- & Aufwältigungsphase, stillgelegt oder verfüllt

Bohrungsvollziehung: dauerhafte Absperrung durchlässiger Formationen mit fließfähigem Inhalt bis zur Oberfläche zum Meeresboden mittels validierter Barrieren.

Cluster, Clusterbohrplatz: Bohrplatz von dem mehr als eine Bohrung niedergebracht werden.

Containment: Druckhaltende, gasdichte Umschließung des Bohrlochs.

Deckgebirge: Hier, die über einer Lagerstätte bis zur Erdoberfläche anstehenden geologischen Schichten.

Drucktest: Aufbringen von Druck aus einer äußeren Druckquelle (kein Lagerstättendruck) zur Überprüfung der mechanischen und abdichtenden Integrität einer Komponente, siehe auch Dichtheistest und Zuflussstest.

Durchflussnass: Oberfläche im direkten Kontakt mit der dynamischen Bewegung von Bohrungsfluiden.

Anmerkung 1 zum Begriff: Übernommen aus API Spec 11D1 [59]

Durchlässigkeit (Permeabilität), Durchlässigkeitseiwert: Maß zur Quantifizierung der Fähigkeit von Gesteinsschichten und Böden, Fluide (Flüssigkeiten wie Erdöl und Wasser, oder Gase) zu transportieren. Mit ihr sehr eng verbunden
ist der „Durchlässigkeitbeiwert“. Die Durchlässigkeit, k, in Quadratmeter oder Darcy (1 Darcy = 10⁻¹² m²), ist der „Proportionalitätsfaktor“ im Darcy’schen Gesetz mit dem Strömungsgeschwindigkeit zu Druckgefälle und dem Inversen der Viskosität in Beziehung gesetzt werden. Für Grundwasser sind Angaben als Durchlässigkeitsbeiwert in Metern pro Sekunde üblich.

ECD Effective Circulation Density: Wirksame Flüssigkeitsdichte unter Berücksichtigung von statistischer und dynamischer Komponenten

Eingessschlossene Bohrung: Bohrung mit einem oder mehreren in Fließrichtung geschlossenen Absperrvorrichtungen

Erste Barriere: siehe Primäre Bohrungsbarriere

Fehler: Außergewöhnlicher, unerwünschter Zustand eines Systemelements, herbeigeführt durch Vorliegen eines fehlerhaften oder Abwesenheit eines korrekten Befehls oder durch einen Ausfall.

Anmerkung 1 zum Begriff: Alle Ausfälle führen zu Fehlern, aber nicht alle Fehler werden von einem Ausfall verursacht

Anmerkung 2 zum Begriff: Systemelemente können beispielsweise ein vollständiges Teilsystem, eine Baugruppe, eine Komponente einschließen

Fluid: Gemeinsame Bezeichnung für Gase und Flüssigkeiten.

Fluidbergbau: Die Nutzung der im tiefen geologischen Untergrund lagernden fluiden Ressourcen über Tiefbohrungen.

Förderrate: Die Menge an Gas bzw. Flüssigkeit, die in einem definierten Zeitraum aus einer Bohrung gefördert wird. Angegeben wird diese vorzugsweise in Volumen pro Zeiteinheit, also m³/h, m³/d oder in Masse pro Zeiteinheit, also t/h oder t/d.

Förderstrang, Komplettierungsstrang: hauptsächlich aus Steigrohren bestehender Strang, der aber auch zusätzliche Komponenten, wie z. B. das Übertage gesteuertes Untertage-Sicherheitsventil (UTSV), Gaslift-Mandrels, Öffnungen für die Injektion von Chemikalien und das Anschließen von Messinstrumenten, Landenippel sowie Packer oder Packer-Abdichtungsbaugruppen, einschließt.

Anmerkung 1 zum Begriff: Der Förderstrang verläuft innerhalb der Produktionsrohrtour und wird verwendet, um Fördermedien an die Oberfläche zu leiten.

Anmerkung 2 zum Begriff: Übernommen aus API RP 90 [58]

Frack-Schließdruck: Der Mindestdruck, der innerhalb eines Risses herrschen muss, um ihn offen zu halten. Er ist in der Regel kleiner als der Aufbrechdruck (Formation Breakdown Pressure), bei dem sich in der Bohrlochwand Risse im Gestein bilden und immer kleiner der als Frack-Ausbreitungsdruck, der innerhalb eines Risses herrschen muss, um ihn auszubreiten

Funktionalität: Betriebsanforderungen an das System/Tragwerk/Gerät, um dessen Integrität zu erreichen und beizubehalten.

Futterrohr: Stahlrohre – auch Casing genannt –, die zu Rohrtouren verbunden in das offene Bohrloch eingefahren und einzementiert werden. Futterrohre sind in der Regel ca. 40 ft (12 m) lang. Sie werden meist mit Außengewinde an bei-

Gefährdung: potentielle Schadensquelle oder eine Situation, die zu einem unerwünschten Ereignis führen kann

Anmerkung 1 zum Begriff: Übernommen aus API RP 90 [58]

Gemeinsames Barriere-Element: Barriere-Element das primäre und sekundäre Bohrungsbarriere gemeinsam nutzen

Höchstkonzentrierte Ringraumkopfdruck MAASP, \(p_{MAASP} \): am Bohrlochkopf gemessener höchster Druck, den ein Ringraum aufnehmen kann, ohne die Integrität eines Elements dieses Ringraums zu gefährden, einschließlich aller ungeschützten offenen Bohrohrformationen.

Intervention & Aufwältigung: Zugang in das Bohrloch, der durch eine bestehende Bohrungsbarriere erfolgen muss.

Im Rahmen der Komplettierung werden in der Regel 1. die zu fördernden Horizonte durch die letzte Rohrtour verrohrt; 2. der Ringraum zwischen Stahlrohr und Bohrlochwand zementiert; 3. das Steigrohr samt Packer und anderen Spezialelementen (Untertage-Sicherheitsventil, Schiebemuffen, Nippel-Profile etc.) in das Bohrloch eingebracht; 4. der Bohrlochkopf mit den Vorrichtungen zum Öffnen und Schließen des Bohrloches installiert; 5. im Falle zementierter Endverrohrungen die Verrohrung im Lagerstättenbereich mit Sandstrahln-, Kugel- oder Hohlladungsperforatoren perforiert.

Komponente: mechanisches Teil, einschließlich Zement, das für eine Bohrungsherstellung verwendet wird.

Konsequenz: erwartete Auswirkung eines eintretenden Ereignisses.

Lagerstättenwasser: siehe Tiefenwasser.

Leckage: unbeabsichtigte und unerwünschte Bewegung von Fluiden.

Leistungsnorm: qualitativ oder quantitativ ausdrückbare Aussage über die Leistung, die für ein System oder Ausrüstungsteil erforderlich ist, damit dieses seinen Zweck zufriedenstellend erfüllen kann.
Liner: Eine Rohrtour, die nicht bis an die Oberfläche geführt, sondern im unteren Bereich der vorangegangenen Rohrtour verankert, abgesetzt und zementiert ist. Durch eine sogenannte Liner-Verlängerung kann der Liner zu einem späteren Zeitpunkt bis zur Oberfläche geführt und dort verankert werden, sollte dies erforderlich sein (s.a. Verrohrung).

Mastervalve: Übertage Absperreinrichtung für die Kontrolle des Flusses aus dem/in das Bohrloch. Im Falle von zwei Mastervalves wird die obere Absperreinrichtung im Routinebetrieb benutzt. Das untere Mastervalve dient als Rückfallabsicherung für den Fall, dass die routinemäßig genutzte Absperreinrichtung undicht wird und ersetzt werden muss.

Packer: Ein hydraulisches Dichtungselement, das in eine Bohrung einfahren und auf Lokation aufgeweitet (gesetzt) wird, um das Bohrloch oder einen Ringraum dicht zu verschließen.

Primäre Bohrungsbarriere: Erste Barriere einer Bohrung im direkten Kontakt mit den Fluiden im Bohrloch. Sie hindern den Ausfluss aus einem Zuflusshorizont und/oder den Abfluss aus dem Bohrloch aus bzw. in andere als den/die geplanten Horizont/e.

Produktionsrohrtour: innerer Futterrohrtour im Bohrloch (s.a. Verrohrung).

Primäre Bohrungsbarriere: Erste Barriere einer Bohrung im direkten Kontakt mit den Fluiden im Bohrloch. Sie verhindern den Ausfluss aus einem Zuflusshorizont und/oder den Abfluss aus dem Bohrloch aus bzw. in andere als den/die geplanten Horizont/e.

Produktionsrohrtour: innerer Futterrohrtour im Bohrloch (s.a. Verrohrung).

Anmerkung 1 zum Begriff: Förderfluide treten unterhalb des Produktionspackers in das Bohrloch ein und fließen durch den Produktionsstrang an die Oberfläche. Die Produktionsrohrtour ist im Minimum für den höchsten aus der Förderzone erwarteten Druck ausgelegt.

Anmerkung 2 zum Begriff: Übernommen aus API RP 90 [58]

Ringraum A: Ringraum zwischen Steigrohr und Produktionsrohrtour.

Anmerkung 1 zum Begriff: Die Bezeichnung mit Buchstaben erfolgt fortlaufend für jeden vorhandenen äußeren Ringraum zwischen den Futterrohrsträngen von innen nach außen, bis einschließlich der Ankerrohrtour- und des Standrohres.

Anmerkung 2 zum Begriff: Übernommen aus API RP 90 [58]

Ringraum B: Ringraum zwischen der Produktionsrohrtour und der sich nach außen anschließenden Futterrohrtour.

Risiko: Umschreibt mögliche schädliche Auswirkungen, die mit einer gewissen Wahrscheinlichkeit eintreten können. So definiert lässt sich ein Risiko beeinflussen durch Reduzierung der Eintrittswahrscheinlichkeit aber auch durch Reduktion des Schadenspotentials eines Ereignisses.

Risikoanalyse: systematische Analyse der Risiken aufgrund von Aktivitäten und eine rationale Beurteilung ihrer Bedeutung im Vergleich mit vorbestimmten Standards, Soll-Risikograden oder anderen Risikokriterien.

Anmerkung 1 zum Begriff: Die Risikoanalyse dient zur Bestimmung der Prioritäten im Risikomanagement

Schiebemuffe: Teil der Komplettierung, mit dem durch Öffnen oder Schließen ein Fließweg zwischen Steigraum und Ringraum geschaffen werden kann.

Schieberstock: Gruppe geflanschter Schieber

Seismik: Geophysikalisches Verfahren, das zur Bestimmung von Schichtgrenzen im geologischen Untergrund eingesetzt wird. Reflexionsseismische Messungen zielen darauf ab, aus reflektierten P-Wellen (Primär- oder Longitudinalwellen) oder S-Wellen (Scherwellen) Erkenntnisse über den Aufbau des Untergrundes zu gewinnen und geologische oder geophysikalische Grenzflächen zu rekonstruieren.

Die erforderliche Umrechnung der Feldmessungen von Laufzeit in Teufe (Tiefenlage) erfolgt nach Abschluss der Messungen in aufwändigen Rechenverfahren im Rahmen des seismischen „Processing“. Das Endergebnis ist ein Abbild des Untergrundes als Schnittbild unter einer seismischen Linie (2D Seismik) oder als drei-dimensionales Abbild (3D Seismik) unter einer untersuchten Fläche.

Sekundäre Bohrungsbarriere: Zweite Barriere einer Bohrung. Sie dient als Rückfallabsicherung und garantiert die Sicherheit für den Fall des Versagens der ersten Barriere. In der Regel umhüllt sie die erste Barriere.

Anmerkung 1 zum Begriff: Übernommen aus API RP 90 [58].

Spacer: Ein Trennfluid, eingesetzt zwischen Spülung und Zementbrühe, um eine maximale Spülungsverdrängung vor Platzierung der Zementbrühe zu erreichen und so Vermischungszonen zwischen Spülung und Zement zu vermeiden. Hierzu wird der Spacer mit spezifischen Eigenschaften insbesondere für Dichte und Rheologie (Viskosität) hergestellt, die auf die jeweiligen Eigenschaften von Spülung und Zementbrühe abgestimmt sind.
Speichergesteine: Poröse oder klüftige Sedimentgesteine, die in der Lage sind, Flüssigkeiten oder Gase zu speichern. Die häufigsten Speichergesteine sind Sandstein, tonige Sandsteine und verschiedene Arten von Kalksteinen.

Spülungsfenster: Das Spülungsfenster in einer bestimmten Teufe ist der notwendige/zulässige Dichtebereich zwischen minimaler und maximaler Bohrspülungsdichte, der ein sicheres Bohren gewährleistet und Probleme wie Zuflüsse in das Bohrloch, Verluste aus dem Bohrloch sowie Verlust an Bohrlochstabilität verhindert bzw. minimiert.

Standrohr: Komponente für die strukturelle Abstützung von Bohrloch, Bohrlochkopf und Komplettierungsausrüstung sowie häufig für die Bohrlochstabilität bei den anfänglichen Bohrarbeiten (s.a. Verrohrung). Anmerkung 1 zum Begriff: Diese Rohrtour ist nicht als drucktragend ausgelegt, kann jedoch nach Komplettierung des Bohrlochs mit einem Futterrohrohrkopf ausgestattet und somit in der Lage sein, niedrige Ringraumdrücke aufzunehmen. Bei Unterwasser- und Hybrid-Bohrlöchern wird gewöhnlich der Niedrigdruck-Unterwasser-Bohrlochkopf an diesem Futterrohrstrang angebracht. Anmerkung 2 zum Begriff: Übernommen aus API RP 90 [58]

Stand-off Ratio: Maß für die Zentralisierung einer Rohrtour im Bohrloch. Eine perfekt zentralisierte Rohrtour hat ein Stand-off Ratio von 100%, eine Rohrtour, die die Bohrlochwand berührt, ein Stand-off Ratio von 0%.

Stillgelegte Bohrung: Bohrung, die von der produzierenden Lagerstätte mittels einer tief im Bohrloch eingebauten Absperreinrichtung, wie z. B. mit einem mechanischen Verschluss oder Zementstopfen, getrennt worden ist. Anmerkung 1 zum Begriff: Komponenten oberhalb der Absperreinrichtung gelten nicht weiter als durchflussnass.

Störfall: Zwischenfall, wie z. B. Explosion, Brand, Verlust der Bohrlochkontrolle oder Freisetzung von Öl, Gas oder gefährlichen Stoffen, der Schäden an Einrichtungen oder ernste Personenschäden verursacht oder erhebliches Potenzial dazu aufweist.

Störungen: Natürliche Brüche („Trennflächen“) im geologischen Untergrund, die durch die Verschiebung oder Verformung von Gesteinschichten entstanden sind. Die Durchlässigkeit für Gase oder Flüssigkeiten kann entlang von Störungen höher oder geringer sein, als die übrigen Gesteine.

Stratigraphie: Die Beschreibung von Schichtabfolgen in Sedimentgesteinen im Zusammenhang mit ihrer zeitlichen Entstehung.

Technische Dichtheit: Eine Komponente wird als technisch dicht bezeichnet, wenn es frei ist von Lecks entsprechend einer vorgegebenen Anforderung (DIN). Anforderungen in Form von zulässigen Leckageraten gewährleisten die Einhaltung der Schutzziele. Die Dichtheitsanforderungen berücksichtigen:

- Gesetzliche Regeln
- Stoffeigenschaften
- Betriebsbedingungen
- Bohrungstyp, -designmerkmale und Status
- Industrienormen wie API 14b [16], EN ISO 14310 [17], ISO/DIS 16530-1 [1] etc.
- Prüfmedium

Technisches open-flow Potential: Maximale, beständige Fließrate aus der Lagerstätte bei atmosphärischen Druck am Bohrlochkopf.

Stand: 07/2017 Seite 92 von 94
Testarbeiten: Im Rahmen der Bohrungsherstellung: Untersuchungsarbeiten an als potentiell produktiv erkannten geologischen Schichten zur Prüfung ihres Schichtinhaltes, Nachweis einer mobilen Phase und Ermittlung der erforderlichen Kennwerte, insbesondere (statischer) Lagerstättendruck und Lagerstättentemperatur und Bohrungsproduktivität, d.h. der erzielbaren Förderraten in Abhängigkeit vom (dynamischen) Bohrlochfließdruck.

Im Rahmen der Förderung einer Bohrung: Untersuchungsarbeiten zur Feststellung der Kennwerte maßgeblich für die Ausforderung der Lagerstätte insbesondere (statischer) Lagerstättendruck und -temperatur, Durchlässigkeitsmächtigkeit (k h), Bohrlochschädigung (Skin, s) und Bohrungsproduktivität.

Thermisch bedingter Ringraumdruck: Druck in einem geschlossenen Ringraum, verursacht durch die thermische Ausdehnung oder Kontraktion eines Fluides.

Tiefenwasser: Mineralisiertes Grundwasser in größeren Tiefen. Kommt es in den erdgas- oder erdölführenden Schichten vor, heißt es Lagerstättenwasser.

Typprüfung: Prüfung eines repräsentativen Probekörpers (oder Prototyps) eines Produkts, welche die Auslegung qualifiziert und somit die Integrität anderer Produkte derselben Auslegung, Werkstoffe und Herstellung validiert.

Überwachung: Aufzeichnung der physikalischen Eigenschaften der Bohrung.

Umgebungsdruk: Druck außerhalb der Bohrung

Verfügbarkeit: Ausmaß, in dem das System/Tragwerk/Gerät in der Lage ist, seine Funktionsfähigkeit beizubehalten.

Verifizierung: Untersuchung, Prüfung, Audit oder Review zur Bestätigung der Übereinstimmung einer Tätigkeit, eines Produktes oder einer Dienstleistung mit festgelegten Anforderungen.

Verrohrung (Rohrtouren): Das System der unterschiedlichen Stahlrohrtouren, die in ein Bohrloch eingebracht werden, um zusammen mit der Zementierung insbesondere die Nutzwasserhorizonte zu schützen, das Bohrloch zu stabilisieren und Formationen geringer Festigkeit, Verlustzonen und Zonen anormaler Formationsdrücke zu isolieren. Zur Verrohrung zählen die Rohrtouren:

- **Standrohr:** Die Rohrtour für den ersten Bohrlochabschnitt. Es wird entweder gerammt oder der Bohrlochabschnitt wird mit einer mobilen Phase und Ermittlung der erforderlichen Kennwerte, insbesondere (statischer) Lagerstättendruck und Lagerstättentemperatur und Bohrungsproduktivität, d.h. der erzielbaren Förderraten in Abhängigkeit vom (dynamischen) Bohrlochfließdruck.

- **Ankerrohrtour:** Die dem Standrohr nachfolgende Rohrtour. Sie überdeckt die für eine Nutzung vorgesehenen Grundwasserleiter als Barriere und nimmt die Bohrlochsperrung auf. Sie wird bis zu Tage zementiert.
- Die tiefere Rohrtouren können entweder bis an die Oberfläche geführt oder sie können im unteren Bereich der vorangegangenen Rohrtour als sogenannter Liner verankert, abgesetzt und zementiert werden.
- Zwischenrohrtour: Rohrtour zwischen Anker- und Produktionsrohrtour, die rein bohntechnische Aufgabenstellungen erfüllt.
- Produktionsrohrtour: Die letzte Rohrtour, die in ein Bohrloch eingebracht wird. Sie nimmt die Komplettierung auf und wird ggf. während der hydraulischen Behandlung und der nachfolgenden Produktion belastet.
- Produktionsliner: siehe Liner.

Wingvalve: Eine Absperreinrichtung am Seitenausgang des Eruptionskreuzes. In der Regel werden zwei Wingvalves am Eruptionskreuz angebracht. Eine Absperrmechanismus zur Regelung und Absperrung des Flusses aus dem/in das Bohrloch und ein zweites Kill Wingvalve auf der gegenüberliegenden Seite zum Totpumpen und zur Druckentlastung.

Zuflusstest: Nutzung des Druckes aus einer entfernten Quelle, z. B. des Lagerstätten- oder Formationsdruckes, um ein Bohrungsbarriere-Element auf Dichtheit zu prüfen, z. B. die gängigen Untertage installierten Sicherheitsventile. Im Rahmen der Prüfung wird der abstromseitige Druck (d. h. auf der Seite des Barriere-Elementes, die der Druckquelle gegenüberliegt) am Bohrungsbarriere-Element verringert, um eine Druckdifferenz über das Element zu erzeugen, und das abstromseitige Volumen auf einen Zufluss oder Druckanstieg hin überwacht, der als Indikator für eine Leckage angesehen wird, wenn er nicht temperaturbedingt ist.

Zuverlässigkeit: Wahrscheinlichkeit, dass Ausrüstung eine festgelegte Funktion unter vorgegebenen Bedingungen für einen festgelegten Zeitraum erfüllen kann.

Zweite Barriere: siehe Sekundäre Bohrungsbarriere.